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This dissertation details an experimental investigation of the center-of-mass motion of

cesium atoms in a time-dependent lattice of light. The research described here proceeds along

two general lines. The first group of experiments considers a realization of the quantum kicked

rotor, where the optical lattice is applied in a series of short, periodic pulses. In the regime where

the classical description of this system is strongly chaotic, the quantum and classical dynamics

differ remarkably due to dynamical localization, which is a manifestation of the quantum sup-

pression of classical chaos. Because this quantum localization is a coherent effect, it should be

vulnerable to noise or coupling to the environment, providing a mechanism for restoring classical

behavior at the macroscopic level. The experimental results confirm that dynamical localization

can be destroyed by adding noise and dissipation in a controlled way, and furthermore they show

that quantitative agreement between the experiment and a classical model can be reached with

a sufficient level of applied noise.

The second line of research considers the weakly chaotic regime, where stable and

chaotic regions coexist in phase space. The optical lattice is modulated sinusoidally in these

experiments to realize the amplitude-modulated pendulum. Careful preparation of the initial

atomic state, including stimulated Raman velocity selection, is necessary to resolve the phase-

space features. Coherent tunneling oscillations are observed between two symmetry-related
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islands of stability in phase space. Because the classical transport between the islands is forbid-

den by the system dynamics, as opposed to a potential barrier, the tunneling in this experiment

is an example of dynamical tunneling. Additionally, the experimental data indicate through mul-

tiple signatures that the tunneling is enhanced by the presence of the chaotic region in phase

space, an effect known as chaos-assisted tunneling.
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1.1 Classical Chaos

The study of chaos in dynamical systems originated near the end of the 19th century [Moser73;

Moser78; Reichl92; Peterson93]. At the time, Newtonian mechanics gave an impressively ac-

curate description of the motion of the bodies in the solar system, even prompting (somewhat

serendipitously) the discovery of Neptune, in order to explain a discrepancy between the pre-

dicted and observed trajectories of Uranus. Although the problem of the dynamics of three

gravitationally interacting bodies was not (and still is not) analytically solvable in general, much

headway was made in the prediction of planetary locations by first considering only the inter-

action of each planet with the sun, and then taking into account the perturbations due to the

interactions of the planets with each other. The apparent clock-like regularity of the solar system

and the accuracy with which the planetary motion could be computed prompted the question of

the stability of the solar system: would the solar system continue in its usual fashion, with the

planets maintaining their regular orbits, or could the motion of the planets change drastically in

the future? Showing that the solar system is indeed stable, which amounts to showing that suc-

cessive corrections (perturbations) to the planetary motion converge, was at the time considered

quite important. In fact, it was posed by Weierstrass, after a comment by Dirichlet, as one of the

prize questions in a contest, organized by Mittag-Leffler, in honor of King Oscar II of Sweden

and Norway. Henri Poincaré submitted a complex and innovative entry that demonstrated the

stability in the three-body problem and was named the winning entry. However, after its publi-

cation it was pointed out that Poincaré had made a significant error in his proof. Mittag-Leffler’s

rather drastic response was to recall and destroy every copy of the issue of Acta Mathematica

in which Poincaré’s proof appeared. Poincaré subsequently produced a revised work that in-

stead appeared as the prize-winning entry; however, this revised work contained the opposite

conclusion: the stability of the solar system could not be guaranteed. The ideas embodied in

this work prompted Poincaré’s later famous statement of how minute differences in the initial

conditions of a system can lead to wildly different outcomes. This is the key notion of chaotic

dynamical systems, which has the consequence that small but inevitable errors in our knowledge

of the state of a system necessarily forbid accurate, long-term predictions of the system’s evolu-
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tion. Thus, despite the deterministic nature of chaotic systems, their dynamics are inherently

unpredictable, and they appear to be random.

Despite Poincaré’s remarkable achievement, the study of chaos did not really take off

for several decades, although there were several important results during this period by George

Birkhoff and Carl Ludwig Siegel, among others. In the 1950’s and 60’s the problem of stability in

the three-body problem was revisited, and an important result was obtained in stages by Andrei

N. Kolmogorov, Vladimir I. Arnol’d, and JürgenMoser, in the celebrated KAM theorem [Moser73;

Moser78; Tabor89]. This result restored the stability of the solar system in the sense that it

showed that certain configurations are stable while others were unstable (at least in restricted

versions of the solar system). Furthermore, if the aforementioned perturbations are small, then

most of the possible configurations are stable. So, although the stability of the solar system

seems to be assured, this whole series of events resulted in the important recognition of the

possibility of chaos.

The study of chaotic systems began in earnest with the advent of computers, which

facilitated the study of the inherent complexity of chaotic systems. This line of study began

with the work of Edward Lorenz, who found this same sort of instability in numerical “exper-

iments” studying a hydrodynamic system, which served as a very basic model for the atmo-

sphere [Lorenz63]. Since then, chaos has been found to be ubiquitous both in physics as well

as in other disciplines, having found applications in such diverse phenomena as plasma confine-

ment [Hazeltine92], laser dynamics [Roy92], chemical reactions [Simoyi82], cardiac rhythms

[Glass86], and disease epidemiology [Schaffer86]. Chaos is also important in the study of dy-

namical systems, as chaos is the rule rather than the exception, despite the traditional textbook

view of physics.

The term “chaos” was introduced [Li75] to refer to this “deterministic randomness” in

dynamical systems. However, it is still difficult to provide a definition of chaos that is universally

accepted. On the other hand, it is possible to point out some important characteristics of systems

that we refer to as being chaotic:
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1. As mentioned before, a dynamical instability leading to unpredictability is a central charac-

teristic of chaos. Furthermore, this instability should be exponential rather than linear in

time, since in the linear case predictability is possible even in the presence of a slight un-

certainty if a sufficiently long history of the system is known. In the exponential (chaotic)

case, however, no additional predictive power is gained by knowing the system history be-

yond the initial condition [Chirikov91]. These properties can be more formally quantified

using the Lyapunov exponent and the Kolmogorov-Sinai entropy [Ott93; Lichtenberg92].

2. The instability is purely deterministic and intrinsic to the dynamics; the chaos is not

explained by external noise [Chirikov91].

3. The instability should be global in the sense that chaotic behavior occurs for a range of

conditions and is not limited to a set of zero measure in phase space (defined below), as

in the unstable configuration of a perfectly inverted pendulum. Also, the chaotic trajec-

tories should be ergodic, so that they eventually wander throughout the possible range of

chaotic trajectories (although it is possible to find disconnected regions of chaos in weakly

perturbed Hamiltonian systems, as we briefly discuss below, and in dissipative systems,

the trajectories are only ergodic over the “attracting set”).

4. The system should be in some sense bounded, to avoid trivial exponential separation of

trajectories, as in x(t) = x0 exp(t) for different x0. To keep the trajectories confined as

they separate from each other, there must be some notion of “stretching and folding,” as

exemplified in the Smale horseshoe map [Hilborn94]. Another related property is that

each point on a chaotic trajectory should lie arbitrarily close to a periodic trajectory (i.e., a

trajectory that repeats itself in finite time) [Devaney89].

5. The physical model of the system should be simple. It is surprising that simple sys-

tems such as the three-body problem can give rise to such complicated and unpredictable

behavior, but complicated behavior is not surprising in a system with many degrees of

freedom. So, for example, although Brownian motion is unpredictable, a deterministic

physical model would include the collisional interactions of a macroscopic number of gas
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molecules; hence, we would not call this system chaotic. (Note that there are methods

for analyzing data to distinguish low-dimensional chaos from such high-dimensional noise

[Sugihara90; Tsonis92].)

When we return to the concept of integrability below, we can be more precise about the meaning

of chaos, at least in Hamiltonian systems.

As an example of the distinction between determinism and predictability in chaotic

systems, consider the standard map, which models one of the two classically chaotic systems

presented in this dissertation. The standard map is a set of two equations,

pn+1 = pn +K sinxn
xn+1 = xn + pn+1 ,

(1.1)

where the sole parameter K controls the “degree of chaos” of the map. This mapping is iter-

ated to determine a trajectory (x0, p0), (x1, p1), . . . , (xn, pn). These equations are, of course,

deterministic, in that there is no random element involved. In fact, though this map looks quite

simple, it gives rise to rich and complicated dynamics. The characteristic lack of predictability

in this map is illustrated in Fig. 1.1, where the standard map is iterated with the same initial con-

dition on four different computers. Even though the results should be identical among the four

computers, they only agree for around 16 iterations. Beyond this point the trajectories diverge,

and prediction clearly becomes meaningless. In principle, it is possible to make meaningful

predictions over a larger number of iterations by using greater precision in the computations.

However, a linear increase in prediction time requires an exponential increase in the numerical

precision. More importantly, for modeling physical systems, the precision with which the initial

state of the system is known nearly always limits the prediction time.

Despite this lack of predictability, chaotic systems can still be meaningfully studied.

The unpredictability that we have indicated thus far is for a trajectory evolving from a particular

initial state. The numerically generated trajectory, referred to as a pseudotrajectory, diverges

away from the real trajectory with the same initial condition; however, it is often possible to find

another real trajectory with a slightly different initial condition that shadows the pseudotrajec-

tory in the sense that it remains close to the pseudotrajectory for long times. This shadowing
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Figure 1.1: Numerical iteration of the standard map, illustrating the inherently unpredictable

nature of chaotic systems. The same FORTRAN77 code was executed on four modern com-

puters to iterate the standard map for K = 10 and the initial condition (x0, p0) = (1, 1). The
spatial coordinate xn (taken modulo 2π) is plotted for the first 40 iterations of the standard
map. Although nominally the same (64-bit, or around 15-digit) “double precision” numerical
representation was used on the different computers, slight differences in the numerical round-

ing methods among the processors are rapidly amplified as the iterations progress. Hence, the

trajectories are identical only for the first few iterations, and they become completely uncorre-

lated after about 25 iterations. The processors employed here were a Motorola PowerPC 750

(solid line), an Intel Pentium III (dashed line), a MIPS/SGI R10000 (dotted line), and a Cray

SV1 processor (dash-dotted line).

occurs for arbitrarily long times in a restricted class of systems (“hyperbolic systems,” which are

comparatively rare), but shadowing occurs also for generic (nonhyperbolic) chaotic systems for

long times between “glitches” [Grebogi90; Sauer91; Sauer97]. An important consequence of

this effect is that global or statistical predictions regarding ensembles of trajectories are still

meaningful and can be accurately computed, implying a robustness or structural stability under

sufficiently small perturbations [Chirikov91]. So, the study of chaotic systems involves a shift

to asking different kinds of questions, and in this way much progress has been made in uncover-

ing universal structure and behavior in chaotic systems. This notion was recognized early on by

Poincaré, who developed a geometric approach to studying dynamical systems that we introduce

in the next section.
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1.1.1 Phase Space

Now we explore the concept of phase space, whose graphical depiction, the phase portrait, is a

powerful tool for visualizing the behavior of dynamical systems. The phase space of a dynamical

system is the space of points that completely specify the state of the system. In a coordinate

representation, a dynamical system can be expressed as a set of first-order differential equations:

∂tx1 = f1(x1, x2, . . . , xn)
∂tx2 = f2(x1, x2, . . . , xn)

...

∂txn = fn(x1, x2, . . . , xn)

(1.2)

(where ∂t ≡ ∂/∂t). This dynamical system is autonomous, since the fi do not explicitly de-

pend on time, but an external periodic drive can be accounted for by introducing time as an

auxiliary coordinate [Ott93]. Then the phase space for this system is the set of all n-tuples

(x1, x2, . . . , xn). The location in phase space at a particular time together with the model func-

tions fi then completely specify the state of the system for all values of the time parameter

t.

In this work we are interested in Hamiltonian systems. These systems are character-

ized by a Hamiltonian function H(xi, pi, t), such that the dynamics in terms of the “canonical

coordinates” xi and pi are given by Hamilton’s equations:

∂txi = ∂piH
∂tpi = −∂xiH .

(1.3)

The phase space is then simply the space of the canonical positions xi and momenta pi. In the

special case where the Hamiltonian is independent of time, the system is said to be conserva-

tive in that the energy (the particular value of H for a given phase-space point) is a conserved

quantity, which follows directly from Eqs. (1.3). For time-dependent Hamiltonian systems, the

energy is not conserved, but all Hamiltonian systems are characterized by the more general con-

servation property that volumes in phase space are preserved under time evolution as a conse-

quence of Liouville’s theorem (and as a special case of Poincaré’s integral invariants) [Tabor89].

The simplest Hamiltonian systems that one can consider are of one dimension (or one

degree of freedom) and time-independent, where the two-dimensional phase space is spanned
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by the pair of variables (x, p). The trajectories in this phase space are simply the surfaces of

constant energy, because energy is a conserved quantity. We illustrate such a phase space by

considering the pendulum, where the Hamiltonian is

H(x, p) =
p2

2
− cos x . (1.4)

The phase portrait for the pendulum is shown in Fig. 1.2. There are several interesting features

to note in the phase portrait. One type of motion, known as “libration” (or “oscillation”), appears

as a set of elliptical contours, along which the trajectories flow in the clockwise direction. These

trajectories correspond to the pendulum motion one observes in the operation of a grandfather

Figure 1.2: Plot of the phase space for the pendulum. The curves (trajectories) are the level

sets of the pendulum Hamiltonian, Eq. (1.4). The different colors correspond to trajectories

beginning from different initial conditions.
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clock, and they emanate from a stable fixed point at (x, p) = (0, 0), which corresponds to the

resting configuration of the pendulum. Another fixed point occurs at (x, p) = (π, 0) (which

is equivalent to the point (−π, 0) because of the spatial periodicity of the Hamiltonian), and

describes the stationary but unstable configuration of an inverted pendulum. Another distinct

type of motion is “rotation,” which appears as a set of curves that do not cross the p = 0 axis.

For this motion the trajectories flow to the right in the upper half-plane and to the left in the

lower half-plane. These trajectories correspond to more rapid motion of the pendulum such that

the pendulum does not reverse direction as in the librational case, but rather continues “over the

top.” The boundary between the two types of motion is the separatrix, which passes through the

unstable fixed point. From this example, we can see that the phase portrait gives a concise, visual

summary of the possible dynamics of a system (although the time-dependence of the trajectories

must still be extracted from the equations of motion).

In the experiments described later on, we study time-periodic (“driven”), one-dimen-

sional Hamiltonian systems. In this case, the phase space is of higher dimension than in the

time-independent case, since time acts as an effective extra dimension. In fact, it can be shown

that these systems (referred to as 1 1
2
-degree-of-freedom systems) are formally equivalent to

two-degree-of-freedom systems [Morrison96]. So, the flow of these systems cannot be repre-

sented in a planar plot in the same way as one-dimensional systems. However, one can instead

use a reduced phase plot, known as a Poincaré surface of section, which is a plane of constant

t, modulo the period of the external drive. The plot constructed in this way consists of the

intersections of the trajectories with the surface of section, which appear as dots in the plane,

each corresponding to the coordinates (x, p) plotted once per drive period. This phase portrait

still captures the full dynamics, since each point in the phase plot uniquely determines all the

successive points in the trajectory. Sample phase portraits of this type are shown in Fig. 1.3,

for the pendulum with a weak, sinusoidal amplitude modulation, and in Fig. 1.4, for a strongly

amplitude-modulated pendulum, corresponding to the system studied in much greater detail in

Chapter 6. This surface-of-section technique also works for two-dimensional autonomous sys-

tems, which have four coordinates in the full phase space, since the conserved energy eliminates
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one of the coordinates, and the phase plane is taken to be at a constant value of another of the

coordinates (where the intersections are also usually only plotted for one direction of passage

through the surface). This technique can be used to study systems with more than two degrees

of freedom, but then the location in the phase plane no longer uniquely determines the rest of

the trajectory.

Figure 1.3: Phase space (Poincaré section) of a pendulum with a weak amplitude drive, with

Hamiltonian H = p2/2 − (1 + 0.05 cos t) cos x. This “stroboscopic” plot is sampled at every
t = 2πn for integer n. As expected from KAM theory, most of the stable structure of the

pendulum is left unchanged by the weak drive. However, the separatrix has broken down into a

disordered region of chaos.
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1.1.2 Integrability and Chaos

Now we will specialize our discussion of chaos to Hamiltonian systems, which will be our main

interest in this work. Before doing so, however, we note that nonlinearity is an essential ingre-

dient for producing chaotic behavior. Returning to the general dynamical system described by

Eqs. (1.2), if this system is linear, then the equations can be expressed in terms of a matrix as

∂txi =
∑

j

Mij xj . (1.5)

Figure 1.4: Phase space (Poincaré section) of a pendulum with a strong amplitude drive, with

Hamiltonian H = p2/2− (1 + cos t) cos x. The stronger modulation here, compared to Fig. 1.3,
breaks down most of the stable pendulum structure, resulting in widespread chaos.
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This linear system of equations then has the solution [Mirsky90]

xi(t) =
∑
j

exp(Mt)ij xj(0) , (1.6)

where exp(A) is the matrix exponential of the square matrix A, which is defined in terms of

the usual Taylor series expansion of the exponential function and exists for any matrix. Hence,

linear systems are quasiperiodic (i.e., having a discrete frequency spectrum) in steady state and

therefore predictable; by contrast, chaotic systems are characterized by continuous power spec-

tra [Ott93; Chirikov91].

Turning back now to Hamiltonian systems, we can see that no chaos occurs in one-

dimensional autonomous Hamiltonian systems, because the existence of a conserved quantity,

the energy E(x, p), allows for the solution [Morrison96]

t =
∫ x
x(0)

dx′ [∂pH(x′, p)]−1 , (1.7)

where p is regarded as a function of x and E. This solution must then be inverted to obtain x(t)

(and hence p(t)). So, the phase-space trajectories are regular for all one-dimensional autonomous

Hamiltonians, as is the case for the pendulum example in Fig. 1.2 (indeed, any continuous dy-

namical system of the form of Eqs. (1.2) with n = 2 is free of chaotic behavior [Ott93]). As a

result, Hamiltonian systems of one degree of freedom are said to be integrable.

The important point of integrability in one dimension is the existence of a constant

of the motion. In the case of N degrees of freedom, the system is integrable if there exist N

independent constants of the motion Ik that are in involution, which means that their Poisson

brackets (taken pairwise) vanish:

{Ij , Ik}P :=
N∑
i=1

[(∂xiIj)(∂piIk)− (∂piIj)(∂xiIk)] = 0 (∀ j, k ∈ {1, . . . , N}) . (1.8)

These constants of the motion are related by Noether’s theorem [Reichl92] to symmetries of

the system (in the one-dimensional case, the constance of the energy is a consequence of the

time-invariance of the Hamiltonian). The existence of these constants insures that the motion

of trajectories in the 2N -dimensional phase space is restricted to N -dimensional surfaces; under
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slightly more restrictive assumptions, these surfaces are N -tori, and there exists a canonical

transformation to action-angle coordinates, in which the dynamics are similar to that of a free

particle (and hence not chaotic) [Morrison98]. Separable systems, where the Hamiltonian has

the form

H(x1, . . . , xN , p1, . . . , pN) = H1(x1, p1) + · · ·+HN(xN , pN) , (1.9)

form a special class of higher-dimensional, integrable systems. These systems are clearly inte-

grable, because they are composed of uncoupled one-dimensional systems.

Generic Hamiltonian systems do not possess the high degree of symmetry required

for integrability. In the case of the 1 1
2
-degree-of-freedom systems studied in this work, the

external periodic drive breaks the time-invariance of the Hamiltonian and thus opens up the

possibility for chaotic behavior. When discussing the formation of chaos in Hamiltonian systems,

it is common to start with an integrable system (such as the pendulum in Fig. 1.2) and view

the symmetry-breaking interaction as a perturbation. When a weak perturbation is added, as

in Fig. 1.3, nonlinear resonances between the degrees of freedom can occur. By the Poincaré–

Birkhoff fixed-point theorem [Tabor89], these resonances produce pendulum-like structures

in the phase space (for weak perturbations). In Fig. 1.3, several nonlinear resonances are ap-

parent, including the original structure of the unperturbed pendulum around the stable fixed

point as well as two other pairs of resonances (although arbitrarily many more are present on

smaller scales). Note that the corresponding structure in the unperturbed pendulum is not in

itself a nonlinear resonance, though, because it is not the direct result of coupling between two

degrees of freedom. Although a single (isolated) resonance does not result in chaotic behavior

[Walker69], the presence of multiple resonances causes their separatrices to broaden into chaotic

regions [Chirikov79] (or homoclinic “tangles” [Ozorio de Almeida88; Tabor89]), as is shown by

the diffuse area around the central resonance in Fig. 1.3. Picturesquely, these resonances are

referred to as “islands of stability in a sea of chaos.”

As expected from KAM theory, the weak perturbation in Fig. 1.3 leaves most of the sta-

ble structure intact. The invariant surfaces that survive the perturbation are thus referred to as

“KAM surfaces.” For the much stronger perturbation in Fig. 1.4, most of the stable structure has
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degenerated into chaos. The chaotic region in this system is bounded in momentum, though, be-

cause for sufficiently large momentum the kinetic energy dominates the perturbing interaction,

restoring stability. The chaotic motion due to the interaction of the resonances can be thought

of as competition between different stable motions, where the trajectory is not dominated by

any one of the motions (as is the case for trajectories in an island of stability).

1.2 Quantum Chaos

The field of quantum chaos, which brings together the study of classical chaotic dynamics and

quantum-mechanical systems, is a relatively new area of study, especially considering how long

the fundamental ideas of its two parent fields have been around. Interestingly, the first notions

of quantum chaos seem to have predated quantum mechanics itself: the problem of “Chladni

figures,” the patterns of dust formed on thin, rigid, vibrating plates, was understood in the 19th

century for plates with simple shapes, but not for plates with irregular borders [Stöckmann99].

(Actually, this problem belongs to a more general class of “wave chaos” problems, but as in

microwave cavities and surface waves in fluids, these systems are equivalent to quantum “bil-

liard” systems in the sense of time-independent quantum mechanics [Stöckmann99].) Einstein

[Einstein17] realized as early as 1917 that there could be problems quantizing classical systems

in the “old” quantum theory, where the classical tori with actions given by a multiple of Planck’s

constant � were associated with quantum states (according to the Bohr-Sommerfeld and later

the Einstein-Brillouin-Keller quantization rules) [Tabor89; Brack97; Zaslavsky81]. This quan-

tization procedure, while emphasizing the connection with the underlying classical description,

obviously fails for chaotic systems where action-angle variables do not exist. The advent of the

“new” (Schrödinger/Heisenberg) quantum mechanics effectively sidestepped these problems

by creating a very different formalism, and it was not until much later that these ideas were once

again appreciated [Tabor89]. Indeed, most of the progress in the field of quantum chaos has

been made only during the last quarter century.

As in classical Hamiltonian systems, there is a sense of integrability in quantum systems.

Symmetries also lead to conserved quantities in quantum mechanics in the form of quantum
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numbers, which are the eigenvalues of operators that “generate” the transformation under which

the system is invariant. For an N -dimensional quantum problem, if there are N operators Îk

associated with conserved quantities that pairwise commute,

[Îj, Îk] := Îj Îk − Îk Îj = 0 (∀ j, k ∈ {1, . . . , N}) , (1.10)

the N (“simultaneous”) operator eigenvalues completely specify the state of the system as well

as its time evolution [Eckhardt88; Reichl92]. This requirement on the quantum operators is

formally analogous to the classical definition of integrability, since the existence of N constants

in involution as in Eq. (1.8) implies the existence of N vector fields,

LIk =
N∑
i=1

(∂piH)∂qi − (∂qiH)∂pi (1.11)

(such that the flow of the trajectories along the LIk leaves Ik unchanged), that pairwise commute

[Eckhardt88; Morrison96]:

[LIj , LIk] = 0 (∀ j, k ∈ {1, . . . , N}) . (1.12)

Alternatively, the pairwise vanishing of the classical constants in the Poisson bracket carries over

more directly to the quantum case in the form of the Moyal bracket [Eckhardt88; Reichl92],

defined in Section 1.3.2 below. In any case, quantum “nonintegrability” occurs when symmetries

are broken, leading to the loss of “good” (conserved) quantum numbers.

Because classical nonintegrability leads to chaotic behavior, onemight expect something

similar to happen for quantum nonintegrable systems. Surprisingly, though, classical chaos is

suppressed in quantum systems. This was discovered numerically in a seminal study by Casati,

Chirikov, Izrailev, and Ford (CCIF) [Casati79] of the quantum version of the standardmap (1.1),

obtained by quantizing the kicked-rotor Hamiltonian,

H =
p2

2
+K cosx

∑
n

δ(t− n) , (1.13)

which generates the classical standard map. (We will treat this problem in detail in Chap-

ter 4.) CCIF studied the kicked rotor in the regime where the phase space is characterized
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by widespread chaos. The classical signature of chaos here is diffusion of an ensemble of tra-

jectories in momentum as they gain energy, on average, from the time-dependent potential.

Quantum mechanically, though, CCIF found that the kicked rotor gains energy as in the classi-

cal case only for a short time, after which the diffusion is suppressed. This effect has come to

be known as dynamical localization, and is a dramatic example of how quantum effects suppress

classical chaos. Shepelyansky [Shepelyansky83] has also provided a striking numerical demon-

stration of the suppression of chaos in the quantum kicked rotor, as we illustrate in Fig. 1.5.

In this simulation, the classical and quantum systems evolve for some time from the same ini-

tial condition, and the suppression of energy growth by dynamical localization is evident in the

quantum case. After evolving for some duration, a time-reversal is performed. In principle, both

models should reverse their behavior and return to their initial conditions. The classical sys-

tem only successfully contracts for a short time, though, and due to the buildup of numerical

roundoff errors, the trajectories “forget” their history and the ensemble resumes diffusion, as

expected for chaotic dynamics. The quantum system, on the other hand, makes a clean return

to the initial state, indicating a robustness against perturbations and thus an absence of chaos.

Note that such stability is expected in bounded quantum-mechanical systems, since they must

have discrete spectra and thus exhibit almost-periodic dynamics [Hogg82].

1.2.1 Quantum Chaology

The apparent irony, then, of the field of quantum chaos is that it is the study of that which does

not exist. Nonetheless, there are still some manifestations of the underlying classical disorder.

One of the best-known examples is the disorder of the energy-levels in quantum nonintegrable

systems, where the energy-level statistics are equivalent to those of random-matrix eigenvalues

[McDonald79; Bohigas84; Tabor89; Reichl92]. Although the disorder in the spectra reflects the

underlying (classical) dynamical disorder, this disorder is not unpredictable in the sense of dy-

namical chaos, because the spectral features can be computed with high accuracy [Delande01].

The quantum-localization effect that we already discussed is another manifestation of the clas-

sical chaos. It has been shown [Fishman82; Grempel84] that the kicked rotor can be mapped

onto the Anderson localization problem [Anderson58], where a particle is spatially localized by
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Figure 1.5: Comparison of classical (heavy solid line) and quantum (thin solid line) momentum

transport in the kicked rotor for K = 10 and scaled Planck constant k̄ = 1 (simulation). The
quantum initial condition is a Gaussian (minimum-uncertainty) wave packet with σp = 2.5, and
the kinetic energy 〈p2/2〉 is plotted as a function of time; the classical evolution is the corre-

sponding average for an ensemble of initial points picked according to the quantum distribution.

The classical transport is diffusive, as characterized by the linear growth of energy. The quantum

transport only shows diffusion for short times, and displays localization for longer times. At 100
kicks (marked by the dashed line), the direction of time is reversed. The classical ensemble

resumes diffusive behavior after numerical errors build up in the simulation (thus converting

the “special” trajectories that evolve back to the initial condition into generic, diffusing trajecto-

ries), which is typical for chaotic dynamics. The quantum system, on the other hand, retraces its

steps back to its initial condition with high fidelity, indicating a lack of chaos. Note that in this

quantum calculation, x is treated as an extended coordinate (as is the case in the experiment),
necessitating a large (2× 106 points) numerical grid to avoid aliasing effects.
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the influence of a disordered potential. Thus in dynamical localization, the disorder that causes

energy localization is not truly random (in the sense of an externally imposed randomness), but

is generated dynamically by the underlying classical chaos. The chaos-assisted tunneling effect

that we discuss in Chapter 6 also reflects the disorder associated with the classical chaos. Since

the tunneling rate is strongly influenced by the states inside the chaotic sea, and these states are

very sensitive to changes in the system parameters, the tunneling rate shows strong fluctuations

as a parameter varies. Similar fluctuations are also apparent, for example, in the conduction of

mesoscopic semiconductor structures [Marcus92; Stöckmann99], but it is worth reiterating that

these symptoms of disorder are not chaotic in the classical sense.

In light of this suppression of chaos in quantum systems, Berry has introduced the term

quantum chaology [Berry87; Berry91] to refer to the study of the “fingerprints” or “signatures” of

classical chaos in their quantized counterparts (of which the above phenomena are examples, as

well as the “scarring” of eigenstates along unstable periodic orbits [Heller84]). This is precisely

the approach to quantum chaos adopted in this work, as we embark on a detailed investigation of

localization, tunneling, and other quantum transport phenomena in classically chaotic systems.

1.2.2 Chaos in Quantum Mechanics

It is worth noting that one can also approach the problem of quantum chaos by asking what

kinds of chaotic behaviors can be found in quantum systems. Part of the difficulty in carrying

over classical chaos to quantum mechanics is that classical chaos is often defined in terms of

the divergence of nearby trajectories, which do not have a straightforward quantum analog. If

two nearly identical wave packets evolve, even in a nonintegrable system, the wave packets will

remain close in the sense that their overlap integral is preserved under unitary time evolution;

however, this is not a proper argument against chaos in quantum mechanics, as this argument

applies also to the overlap integral of two classical phase space distributions evolving by the

Liouville equation [Hilborn94]. A variation on this idea is to look at sensitivity to parameter per-

turbations, rather than perturbations to the quantum state, to uncover some quantum sensitive

dependence. Because of the sensitivity to parameter perturbations of quantum states associated
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with chaotic regions in phase space, the overlap of two initially identical wave packets evolving

under slightly different Hamiltonians will drop exponentially under chaotic conditions, but will

remain large in the stable case [Peres91b; Haake01; Gardiner97; Gardiner00]. This idea has

also been extended to studying the sensitivity of wave-packet evolution under randomly per-

turbed Hamiltonians, which shows a marked difference between stable and chaotic conditions

[Schack93; Schack94].

It is also possible to focus on the short-time quantum dynamics, where the behavior

resembles that of classical chaos, as is apparent in the initial diffusive phase of the quantum

kicked rotor [Chirikov87] shown in Fig. 1.5. Furthermore, initially localized wave packets can

also show exponential instability for short times [Toda87; Fox94; Lan94], as expected for a

similar classical distribution. Hence Chirikov [Chirikov92] has advanced the notion of finite-

time quantum chaos. There are also examples of genuine chaos where quantum mechanics is

involved. Quantum systems can give rise to chaotic behavior when coupled to a classical sys-

tem, as is the case for example with two-level atoms in a cavity coupled to a classical field

[Belobrov77; Milonni83; Fox90] or in a quantum-mechanical oscillator coupled to a classical

oscillator [Cooper94]. It has even been argued that chaos is possible in a purely quantum-

mechanical system obtained by quantizing a classical chaotic system, although not by the usual

quantization procedure, and this “configurational chaos” requires that the canonical momenta be

unbounded [Chirikov88; Weigert93; Peres96]. (Another proposal for a purely quantum chaotic

system [Blümel94] seems suspect in that the apparatus itself must become exponentially more

complicated as the evolution continues, and additionally shows sensitivity to perturbations of

the system parameters rather than to perturbations of the quantum state [Schack95].)

Finally, we note that the concept of the trajectory is central to the de Broglie–Bohm

formulation of quantum mechanics, so it is natural to look for chaotic behavior of these trajecto-

ries [Bohm93]. Interestingly, though, it has been found that the de Broglie–Bohm trajectories

can be chaotic even for an integrable billiard [de Alcantara Bonfim98], so in a sense there is “too

much” chaos in the de Broglie–Bohm picture, in contrast to the “not enough” chaos in standard

quantum mechanics. It is not clear, however, that these chaotic trajectories have any mean-
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ingful predictive power outside the statistical ensemble that reproduces the results of standard

quantum mechanics.

1.2.3 Experiments in Quantum Chaos

By far the majority of progress in the field of quantum chaos has been theoretical, but now there

has developed a large body of experiments to complement the theoretical advances. In this

section we give a very brief and far from complete overview of experimental work in quantum

chaos to illustrate the variety of systems in which the ideas of quantum chaos are important. An

important first step towards experimental study in this area was taken with the work of Bayfield

and Koch on the multiphoton ionization of hydrogen Rydberg atoms [Bayfield74]. A discrep-

ancy between the measured ionization thresholds and the predictions of classical models pro-

vided the first experimental evidence of dynamical localization [Galvez88; Bayfield89; Koch95].

Subsequently, Rydberg atom ionization experiments have given rise to a variety of interest-

ing phenomena [Blümel97], including scarring effects [Koch92; Koch95] and effects due to

“metamorphoses” of classical resonances as the field strength is varied [Bayfield96]. The spec-

troscopy of atoms in external fields also provides a frequency-domain arena for tests of quantum

chaos, including level statistics [Delande91; Delande01] and the influence of periodic orbits

[Eichmann88; Main91; Gutzwiller90]. The statistics of resonances in atoms, molecules, and

nuclei have also been shown to exhibit level-repulsion effects [Eckhardt88; Haake01].

As mentioned before, mesoscopic semiconductor structures provide an important arena

for the study of quantum chaos [Stöckmann99]. Conductance measurements of semiconductor

billiard structures show “universal conductance fluctuations” and weak localization effects with

the application of strong magnetic fields [Marcus92; Stöckmann99]. The tunneling current

through quantum-well heterostructures (“resonant tunneling diodes”) can also be understood

in terms of unstable periodic orbits in a chaotic regime [Fromhold94] and show effects due to

scarring [Wilkinson96a]. Semiconductor antidot lattices provide a different setting for studying

conductance fluctuations with applied magnetic fields [Weiss91; Weiss93], giving an experi-

mental realization of the Lorentz gas [Stöckmann99]. Another related billiard-like system is the
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“quantum corral” [Crommie95], where a scanning tunneling microscope (STM) can be used to

move individual atoms on a surface to build a confining structure for electrons.

A different class of experiments explores the area of “wave chaos,” exploiting the formal

equivalence of various other wave equations to the Schrödinger equation under certain circum-

stances. Perhaps the most notable among these are the microwave-cavity billiard experiments

[Stöckmann99], in which such topics as level statistics [Stöckmann90], scarring [Sridhar91],

dynamical localization [Sirko00], chaos-assisted tunneling [Dembowski00], and a trace formula

[Dembowski01] have been studied. This line of analysis has been extended to the study of

deformed micro-disk cavity lasers, which act as open billiard systems in the optical domain

[Gmachl98]. A similar realization of wave chaos occurs with the mechanical vibrations of alu-

minum blocks [Weaver89; Ellegaard95] or rigid plates [Neicu01; Stöckmann99], and billiard-

type experiments can be carried out using surface waves [Lindelof86; Blümel92; Kudrolli01] or

ultrasonic waves [Chinnery96] in fluids. Many of these billiard-type experiments are reviewed

in [Stöckmann99]. Finally, the equivalence of the electromagnetic equation in the paraxial ap-

proximation with the Schrödinger equation can be exploited to create an optical realization of

the kicked rotor [Fischer00; Rosen00].

Of course, the field of atom optics provides a clean and precise setting for experimental

explorations of quantum chaos, including the dynamical localization effect that we have intro-

duced, but we defer this discussion until Section 1.4.

1.2.4 On the “Usefulness” of Quantum Chaos

The field of quantum chaos is generally associated with fundamental interests in quantum me-

chanics, because of the initial motivation in this field to understand the interplay and corre-

spondence of quantum and classical mechanics. However, it is worth pointing out that quantum

chaos is also emerging as a field with important technological applications, and hence progress

in this field is desirable also from an applied standpoint. One obvious area where these ideas

will be important is in the semiconductor and microprocessor industries, where the nearly ex-

ponential increase in density of components will soon lead to sufficiently small devices that
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quantum effects will be significant. Present devices are strongly coupled to the environment

at normal operating temperatures, so that the electron coherence length is very short and thus

quantum effects are only important at very low temperatures, as in the conductance fluctuation

experiments mentioned above. But when quantum effects take over, the semiconductor devices

will obviously not have the high degree of symmetry necessary for integrability, so the charge

transport in these devices will fall in the regime of quantum chaos. Along these same lines, the

future development and demonstration of quantum computers [Steane97] will require careful

consideration of effects due to classical chaos to ensure proper operation [Georgeot00].

As we have already discussed, quantum chaos has been important in the understanding

of atomic spectra. Quantum chaos has also been shown to be of importance in the dynamical

manipulation of atoms by light [Robinson96]. However, there are many more applications of

quantum chaos outside of quantum mechanics in other wave systems. For example, quantum-

chaos effects are important in the understanding of underwater acoustics [Sundaram99b]. We

have also already mentioned the applicability of quantum chaos to the understanding of the

mode structure of microwave cavity devices and mechanical vibrations. In a similar optical anal-

ogy, weakly deformedmicro-disk semiconductor lasers show large improvements in directionality

and intensity over normal whispering-gallery mode lasers, which is an application of wave chaos

in an open system [Gmachl98]. Finally, a fiber-optical switch for the communication industry

has been proposed [Vorobeichik98], based on the ideas of chaos-assisted tunneling, which we

study in Chapter 6. In fact, a company (OpTun Ltd.) has been founded to develop these ideas.

1.3 Decoherence

The lack of long-time chaotic behavior in quantum mechanics seems to bring up difficulties in

how the theories of quantum and classical physics are related. Specifically, since quantum me-

chanics is believed to be the more universal theory, it should in some sense “contain” classical

mechanics as a limiting case. This idea, first advanced by Bohr, is known as the Correspondence

Principle, and showing how classical-quantum correspondence arises remains even now a con-

troversial and challenging problem. But because quantum mechanics does not support chaotic
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behavior in the sense of classical mechanics, it seems, oddly, that chaos cannot exist even in

classical mechanics, if we are to believe in correspondence. In a simplistic view one might ex-

pect to recover classical mechanics by formally taking the limit � → 0 (of course, since Planck’s

constant � is indeed a constant, what we really mean is that we are taking the limit where the

action of a system becomes arbitrarily large compared to �). However, this limit is highly sin-

gular and not necessarily well-defined, as one can see from the form of the WKB wave function

ψ ∼ exp(iS(x)/�) (where S is the action of the system) that applies in the “semiclassical”

regime of small �, which has an essential singularity at � = 0.

One path to correspondence is suggested, for example, by the initially diffusive behavior

in the kicked rotor that we noted above, which mimics the diffusion characteristic of classical

chaos. It has been argued [Chirikov87; Cohen91; Delande01] that the “quantum break time” tB,

when the behavior crosses over from diffusive to localized, scales as 1/�2, since in an energy-time

uncertainty sense, this is the time required for the discrete spectrum to become “resolvable” by

the system. Hence, it would seem that for macroscopic systems, the break time could become

unobservably long because � would effectively be very small. However, there is a second time

scale for quantum deviations from classical behavior, known as the “Ehrenfest time” tE, which

scales much more slowly, as log(1/�). The existence of this time was pointed out originally by

[Berman78] for a specific model, and this time scale was discussed by [Adachi88; Cohen91] in

the context of the kicked rotor, by [Karkuszewski01] for another driven, one-dimensional system,

and by [Zurek94] for general chaotic systems. We will discuss the origin of this time scale in

more detail below. The slow scaling of this time has dire consequences for correspondence,

for although this time scale diverges as � → 0, in physical reality � is always some nonzero

value, and thus spanning 30 orders of magnitude in � from a manifestly quantum regime to

a manifestly classical regime yields a relatively minor change in tE. By this argument, then,

we would predict absurdly short times for which quantum effects should set in for classically

chaotic systems [Adachi89; Zurek95]. Since this obviously violates common experience in the

macroscopic world, there is clearly a need to resolve this discrepancy between the quantum and

classical pictures.
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One solution to this problem is embodied in the theory of decoherence. The key idea

here is that macroscopic objects are in general not very well isolated from their “environment,”

which could, for example, include the internal (thermal) degrees of freedom or the ambient pho-

tons scattering off the object. Decoherence provides a mechanism by which the quantum co-

herence effects that suppress chaos can themselves be suppressed. Thus, even though it seems

clear that classical behavior does not, in general, arise as a limit of the Schrödinger-equation de-

scription, it can arise as a limit of an “open” quantum description that takes into account the

external influences on the system [Joos85].

Broadly speaking, there are two “roles” of decoherence in explaining classical behavior

as a consequence of quantum mechanics. The first is the suppression of quantum superposition

states at the classical level, which addresses the famous Schrödinger cat paradox and is inti-

mately related to the quantum-measurement problem [Wheeler93; Giulini92]. The second role

of decoherence is in ensuring classical behavior in the dynamical evolution of a system. These

two roles are, of course, closely related, but we will discuss them separately according to how

they are applied in explaining classicality.

1.3.1 Suppression of Quantum Superposition

In Schrödinger dynamics, the state of the system is described by the wave function or state

vector. For open systems, though, a more natural representation of the system is in terms of the

density operator. For a state |ψ〉, the density operator is defined as

ρ̂ := |ψ〉〈ψ| . (1.14)

In this case the density matrix (the representation of the density operator in a particular basis) is

highly redundant, because if the state vector has n components in some finite basis, the density

matrix has n2 components, but does not contain additional information. However, the density

matrix has the advantage that it can be generalized to an ensemble in a straightforward way

simply by averaging over the members |ψj〉 of the (usually large) ensemble,

ρ̂ :=
1
N

∑
j

|ψj〉〈ψj | . (1.15)



1.3 Decoherence 25

A state corresponding to a wave vector as in (1.14) is referred to as a pure state, whereas an

ensemble average as in (1.15) is a mixed state. The diagonal elements ραα = 〈α|ρ̂|α〉 of the

density matrix are the populations, as they represent the probability of occupying the state |α〉.

The off-diagonal elements ραβ = 〈α|ρ̂|β〉 (α �= β) contain the relative-phase information of the

state, and are referred to as coherences. The important feature of the coherences to note here is

that they have their maximum magnitude for a pure state. In a mixed state, if the phases of the

various components are not aligned, the magnitudes of the coherences are reduced, falling to

zero for a completely uncorrelated ensemble. Notice that because the coherences represent the

potential for interference effects, they are in effect the “nonclassical” part of the density matrix.

It is only the populations that have a sensible interpretation as classical probabilities.

The treatment of a system interacting with its environment begins typically by identi-

fying the degrees of freedom associated with the “system” of interest and the “reservoir” which

represents the environment. The combined system is then represented by the density operator

ρ̂S+R, and we assume that this combined system is now “closed” in the sense that there are no in-

teractions with other systems that are not already described by this density operator. In a closed

system, the density operator evolves according to the Schrödinger-von Neumann equation

∂tρ̂ = − i
�
[H, ρ̂ ] , (1.16)

which gives the same evolution as the Schrödinger equation for the state vector. Hence a pure

state, treated as a closed system, will evolve into a pure state as a consequence of the “unitarity”

of the evolution equation. However, since we are generally interested in the system, which may

have only a few degrees of freedom, we would like to ignore the information associated with the

reservoir, which typically has many more degrees of freedom than we could possible monitor.

One approach along these lines is suggested by the form for expectation values of operators in

terms of the trace over the density matrix:

〈Â〉 = Tr[Âρ̂ ] . (1.17)

The average over the reservoir is then given by a partial trace taken over the reservoir degrees of
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freedom, resulting in a “reduced” density operator that describes only the state of the system:

ρ̂S = TrR[ρ̂S+R] . (1.18)

In general, the evolution of ρ̂S depends on its history, but in the case where the reservoir is

large, it should decorrelate rapidly, and so a Markovian approximation is justified. In this case

it is possible to derive a master equation for the evolution of ρ̂S [Cohen-Tannoudji92], which is

similar to the unitary evolution equation (1.16) but with extra nonunitary terms describing the

exchange of energy with the environment (dissipation or relaxation) and the redistribution of

populations due to fluctuations in the environment (diffusion) [Zurek91; Zurek94]. In terms of

the density matrix, these new terms cause the evolution of a pure quantum state into a mixed

quantum state, since the diffusion terms cause the coherences to be damped away [Zurek91;

Cohen-Tannoudji92]. Although the interferences that were initially in the system still exist,

they are moved out of the system and into the reservoir as the system and reservoir become

entangled through their interaction [Joos85].

The idea of decoherence, in its simplest form, is that the interaction with the environ-

ment can suppress the quantum coherences on a time scale that is many orders of magnitude

shorter than the time scale associated with relaxation [Zurek91]. So, while the environment has

a negligible impact on the “classical aspects” of the system, the coherences can be suppressed

effectively instantaneously in a macroscopic system. The resulting diagonal density matrix can

then be interpreted as a classical probability distribution.

The question that now arises is why the density operator should become diagonal in a

particular basis and not some other. The answer depends, of course, on the nature of the en-

vironmental interaction. It has been argued [Zurek81; Zurek82; Paz93] that the environment

naturally selects a preferred (“pointer”) basis, which consists of those states that are minimally

affected by the environment (i.e., they become minimally entangled with the environment).

These states are, in a sense, “robust” to the decoherence. This principle of “environment-

induced superselection” [Paz93] highlights the relation of decoherence to the measurement of a

quantum system. Such a measurement necessarily entails an interaction with the environment,
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namely the measuring apparatus [Paz99]. The nature of the interaction is tailored to the mea-

surement of some observable, and the minimally coupled states are determined by a combination

of the system Hamiltonian and the interaction Hamiltonian for the environmental coupling. A

measurement may require a strong interaction that dominates the system Hamiltonian, so that

the pointer states are the eigenvalues of the interaction Hamiltonian, leading naturally to the

idea that measurement “collapses” the system into an eigenstate of the operator correspond-

ing to the measured observable. The naturally selected states have also been demonstrated,

for example, to be localized states in phase space in the case of an environmental coupling (of

intermediate strength) to the position of a particle [Paz93], coherent states for the weakly cou-

pled harmonic oscillator [Zurek93], and energy eigenstates in the regime of weak coupling to

the environment, where the system Hamiltonian is dominant [Paz99]. Beyond the reduction to

a classical mixture, decoherence addresses the issue of how a quantum system is forced into a

definite state by the measurement interaction (notice that the only diagonal, pure-state density

operators correspond to the basis states). The “measurement” is made by the environment, in

that the entanglementwith the environment transfers information to the environmental degrees

of freedom. The statistical mixture that we are left with in the master-equation description is

a reflection of our ignorance of the state of the environment, which in a macroscopic system

is too complicated to keep track of even in principle. Since the outcome of the measurement

is intimately tied to the immensely complicated environment, the measurement appears as a

“random” collapse of the state vector. Thus, decoherence attempts to bring the measurement

process back within the unitary evolution framework of quantum mechanics, without appealing

to an extraneous notion of wave-function collapse, as in the orthodox interpretation of quantum

mechanics [Joos85; Zurek91].

1.3.2 Classical Chaotic Evolution

So far, we have seen that the interaction with the environment can take a state with quantum

features and convert it into a state that is sensible in a classical description. More important for

the correspondence principle in dynamical systems, however, is to understand how decoherence

can cause the evolution of a quantum system (which we have seen is particularly problematic in
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nonintegrable systems) to cross over to classical behavior.

One important tool for this discussion is the Wigner function (or distribution), which

facilitates the description of quantum dynamics in phase space. The Wigner function is defined

in terms of the density matrix as [Wigner32; Schleich01]

W (x, p) :=
1
π�

∫ ∞
−∞
dx′e2ipx

′/�〈x− x′|ρ̂|x+ x′〉 . (1.19)

The Wigner function is not the only quantum phase-space distribution [Hillery84], but it has

several features that make it preferable to other distributions. Each marginal distribution of the

Wigner function, where one of the variables is integrated out, results in the probability distri-

bution corresponding to the other variable. The Wigner function itself, however, is not a joint

probability distribution, since it can take on negative values, which represent the interferences

or coherences of the quantum state. The evolution of the Wigner function (for one degree of

freedom) can be expressed in terms of the Moyal bracket of the Hamiltonian and the Wigner

function [Moyal49; Reichl92; Shiokawa95],

∂tW (x, p) = {H,W}M

:= −2
�
H(x, p) sin

[
�

2

(
←−
∂p
−→
∂x −

←−
∂x
−→
∂p

)]
W (x, p) ,

(1.20)

where the arrows on the derivative operators indicate the direction of operation. For a particle

Hamiltonian in “standard form,” H = p2/(2m) +V (x), the Moyal bracket can be written as the

Poisson bracket plus quantum “correction” terms,

∂tW = {H,W}P +
∞∑
n=1

(−1)n�
2n

22n(2n+ 1)!
(∂2n+1
x V )(∂2n+1

p W ) . (1.21)

This equation is especially suitable for comparing the quantum evolution with the evolution of

a classical (“Liouville”) distribution ρL,

∂tρL(x, p) = {H, ρL}P , (1.22)

which is described only by the Poisson bracket. Notice that formally setting � = 0 in (1.21)

recovers the Liouville evolution (1.22), so that correspondence seems easy in this formulation;
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however, it must be emphasized that taking the limit � → 0 for a quantum system is not trivial

and may not be well defined without the assistance of external degrees of freedom.

It is immediately clear from the form of the Moyal bracket (1.21) that quantum-classical

correspondence is particularly simple for “linear” systems, such as a free particle or a harmonic

oscillator, because the quantum-correction terms vanish, yielding identical quantum and classical

evolution equations. This point was recognized early on by Schrödinger, when he constructed

the coherent states of the harmonic oscillator that mimic the classical oscillating trajectories

[Schrödinger26]. Hence, all that is needed for correspondence in these systems is the action of

decoherence for a mere instant (say, a single measurement), after which the quantum evolution

preserves the classicality of the state. In the more general and challenging case, the nonlin-

earities of the system dynamically generate quantum interferences in the course of evolution

[Habib98b]. The quantum terms cause the evolution to be unitary (notice that the classical

evolution, even for a closed system, is manifestly nonunitary [Habib00]), and thus it is these

quantum terms that are responsible for the suppression of classical chaos. (Note that this is

a much more meaningful way to treat the absence of chaos in quantum mechanics than sim-

ply appealing to the linearity of the Schrödinger equation.) The picture of quantum-classical

divergence according to [Zurek94] is that because of the exponential stretching of a Liouville

distribution under chaotic evolution, the distribution develops fine structure on a very short

time scale. Since the quantum-correction terms involve derivatives of the Wigner function, they

will be unimportant for an initially smooth distribution, but will quickly become important as

fine structure develops due to the classical part of the evolution. From this argument, we ex-

pect the log(1/�) breakdown time that we mentioned earlier as a consequence of exponential

chaotic divergence. To achieve correspondence in the nonlinear regime, a single measurement

at a single time during the evolution is insufficient to cause agreement between classical and

quantum. For example, in the case of dynamical localization it is insufficient to decohere the

system after the quantum break time, because although such an action would temporarily re-

store diffusive behavior, it would already be “too late,” as the subsequent evolution could never

catch up to the corresponding classical, continuously diffusing evolution. Rather, it is impor-
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tant to have continuous decoherence, which would effectively broaden the spectral components

of the evolution and never allow the discreteness of the spectrum to become manifest. In the

picture of [Zurek94], the interaction with the environment results in additional diffusive terms

in the evolution equation (corresponding to the diffusion terms in the master equation for the

density-matrix evolution) that tend to smooth the Wigner function. The resulting evolution

is a balance between the usual evolution, which wants to generate fine structure, and the de-

coherence, which wants to destroy the same fine structure. For sufficiently strong noise, the

fine structure can be tempered to the point where the quantum corrections remain unimpor-

tant, and the evolution is the same as that of the classical system subject to the same diffusive

interaction. In the semiclassical limit, only a very small amount of noise is required to keep the

quantum corrections under control (diffusion is only necessary on the scale of an � cell in phase

space), so that the effect on the classical chaos is effectively negligible. This argument gives a

nice picture of how decoherence can induce classical evolution, but we should note that there

are some subtleties that may still need to be addressed for certain systems, including the kicked

rotor [Habib00].

In studying the decoherence due to environmental interaction, it is possible to use an

approach based on the master equation [Brun96; Gong99; Bhattacharya00] that models all of

the effects due to the environment, or a simplified approach that employs an external noise

source [Ott84; Adachi88; Scharf94]. The latter approach is justified because the noise-induced

diffusion (not dissipation) is mostly responsible for the decoherence [Zurek94; Helmkamp96].

Furthermore, there are several levels at which correspondence has been examined in various the-

oretical studies. The most qualitative is the removal of nonclassical features by decoherence,

including the destruction of scarred states [Scharf94] and the restoration of the irreversibility

that is so conspicuously absent in unitary quantum evolution [Shiokawa95]. At the next level

is the quantitative agreement of quantum and classical expectation values [Ott84; Gong99;

Bhattacharya01]. Although such quantitative agreement is important, the expectation values

carry only a small amount of information about the system, which motivates the study of cor-

respondence at the level of ensembles and distribution functions [Adachi89; Habib98b]. Even
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here, though, it is possible to have agreement at the ensemble level even in a quantum regime

[Gong99], where it may still not be possible to associate classical trajectories with quantum

evolution. Hence the strongest form of correspondence is obtained in a quantum trajectory ap-

proach, where a decoherence-influenced wave packet traces out a chaotic trajectory with the

same properties as a corresponding classical trajectory (with noise added to the classical system

to account for the “direct” contribution of the decoherence) [Spiller94; Brun96; Bhattacharya00;

Scott01].

It has been argued that an appeal to the influence of the environment is not necessary

for correspondence, but rather a coarse-graining, as for example manifested in the Husimi dis-

tribution [Hillery84], can serve to remove the nonclassical structure of the Wigner distribution

[Casati95]. However, as pointed out in [Habib98b], such an approach will not in general be

successful because this coarse graining hides the nonclassical features in an essentially trivial

way (because it can be reversed); it does not change the dynamical evolution of the quantum

system, which as we have seen is certainly necessary for correspondence; and the coarse graining

forbids correspondence at the trajectory level, which is in a sense the most impressive form of

correspondence. The importance of environmental noise in explaining chaos is then somewhat

ironic. Classical chaos is usually understood as arising solely from the system itself and not from

an external noisy source, as we have pointed out in Section 1.1. At a deeper level, though, a

certain amount of noise is necessary to obtain chaotic behavior from quantum mechanics. But

because this noise level can be exceedingly small on macroscopic scales, the chaotic instability

arises operationally from the “classical” dynamics rather than the perturbative noise.

1.3.3 Experiments on Decoherence

Despite the vast body of theoretical work on decoherence, there have been relatively few ex-

periments dealing directly with the effects of decoherence on quantum systems. The situation

is beginning to change now, though, due to the necessity of combating decoherence in systems

where quantum coherence is very important, such as in quantum computers [Steane97]. In

linear systems, there have been several impressive and clean experiments. The most funda-
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mental linear quantum problem, the two-slit experiment, has been realized as an atom interfer-

ometer, where light scattered by the atoms serves as a decohering measurement [Chapman95;

Kokorowski01]. Decoherence has also been studied in an entangled Rydberg atom/microwave

cavity system [Brune96], where the cavity acts as a measuring device for the internal atomic

state. The decoherence of a superposition of motional states has also been studied in an ion trap

[Myatt00; Turchette00].

The first experimental studies in decoherence actually began with nonintegrable sys-

tems, where the effects of noise on the ionization of driven hydrogen [Bayfield91; Sirko93;

Koch95; Sirko96] and rubidium [Blümel89; Arndt91; Blümel91; Benson95] Rydberg atoms were

studied. Especially relevant to the work on correspondence that we discuss in Chapter 4 are

Refs. [Bayfield91; Sirko93; Koch95], where noise added to the microwave driving of the Rydberg

atoms led to improved agreement with classical predictions of ionization thresholds (which is an

agreement at the expectation-value level, in contrast to the distribution correspondence that we

present in Chapter 4). There has also been some work investigating the effects of temperature

on conductance fluctuations in mesoscopic semiconductor quantum dots [Clarke95; Huibers98].

Optical-analog experiments open up the possibility for decoherence experiments in wave-chaos

systems, where perturbations to diffraction-grating positions in an optical kicked-rotor realiza-

tion led to destruction of dynamical localization [Fischer00; Rosen00]. Again, atom optics has

contributed several experiments to this area, the discussion of which we defer until the next

section.

1.4 Atom Optics

The field of atom optics is generally concerned with the manipulation of atoms using electro-

magnetic fields or material objects. In a sense, this field is the dual of traditional optics, where

matter is used to manipulate electromagnetic (optical) fields. By far the majority of work in this

field involves the optical manipulation of atoms, which is the case in this dissertation, although

notable exceptions include the trapping of ions by electric fields [King99], the trapping of neu-

tral atoms in static magnetic traps [Migdall85], the reflection of atoms by the Casimir–van der
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Waals potential [Shimizu01], and the diffraction of atoms by lithographically fabricated gratings

[Keith91]. The important concept in the optical manipulation of atoms is that light carries mo-

mentum. The momentum carried by photons is ordinarily very small, and macroscopic objects

are generally immune to optical momentum effects. However, the momentum transferred to

an atom when it scatters photons can have a very significant effect on its motion. Although

the deflection of atoms by light (“radiation pressure”) dates back to 1933 [Frisch33], it was not

until the advent of lasers that much progress was made in this field. Subsequently the cooling

of trapped ions using laser light was proposed [Hänsch75; Wineland75] and demonstrated soon

thereafter [Wineland78; Neuhauser78]. The development of trapping and cooling of neutral

atoms introduced more difficulties, though, because the optical forces are so weak compared to

the electric-field forces used in ion traps, and so thermal atoms from an atomic beam were very

difficult to trap. But the slowing of a thermal beam of atoms [Phillips82] and the subsequent

demonstration of laser cooling of neutral atoms in three dimensions (using “optical molasses,”

where laser light acts as an effective damping medium for the atoms) [Chu85] led to magnetic

[Migdall85] and optical [Chu86] traps for atoms.

It was, however, the addition of a magnetic field to optical molasses that revolution-

ized atomic physics. This idea, due to Jean Dalibard [Chu98], resulted in the efficient cooling

and trapping of atoms from an atomic beam [Raab87] in a device now known as the magneto-

optic trap (MOT). The MOT uses optical molasses to cool atoms, while simultaneously taking

advantage of the Zeeman shift of the atomic energy levels in a magnetic field to introduce a

spatial dependence on the radiation pressure and hence confine the atoms to the center of the

trap. The MOT was considerably simplified when it was demonstrated that atoms could also be

trapped directly from an ambient atomic vapor [Monroe90], and it is now relatively simple to

construct a very basic MOT [Wieman95]. The MOT is now a true workhorse in atomic physics,

as it provides a convenient, cold, localized, and well-controlled sample of atoms that can be used

as the starting point for a wide range of experiments [Adams97], including Bose-Einstein con-

densation [Anderson95; Bradley95; Davis95], atom interferometry [Kasevich91], cold collisions

and photoassociation spectroscopy [Gardner95], electric dipole moment searches [Bijlsma94],
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precision atomic clocks [Gibble93], and atom lithography [Timp92; McClelland93]. Indeed, all

the experiments that we describe in this dissertation are performed with a cesium MOT loaded

from atomic vapor, much like the setup in [Monroe90], as discussed further in Chapter 3. For

some of the experiments that we will discuss, much more elaborate preparation of the atoms is

necessary after the initial trapping and cooling of the atoms, as described in Chapter 5.

1.4.1 The Dipole Force and Optical Lattices

The forces used in a MOT are due to the absorption and spontaneous emission of light. Because

the direction of a spontaneously emitted photon is random, this force is incoherent and results in

the diffusion of momentum on the scale of the atomic recoil momentum due to a single photon

scattering event (the “photon-recoil momentum”). Although this force is useful for the collec-

tion and preparation of atoms, the subsequent manipulation of atoms is greatly facilitated by the

use of the dipole force, which does not involve dissipation or diffusion, and is thus a coherent in-

teraction. The dipole force is a result of the interaction of an optical field and the atomic dipole

moment induced by the field. The dipole interaction energy has the form−d ·E, where d is the

atomic dipole moment and E is the electric field. Since the induced dipole moment is propor-

tional to the applied field, the optical potential is proportional to the field intensity, and thus the

dipole force is proportional to the gradient of the field intensity. In a photon picture, this force

arises as a consequence of stimulated scattering of photons by the atom, where the redirection of

a scattered photon results in a corresponding “recoil” by the atom. This effect is also known as

the ac Stark shift or light shift of the atomic energy, and was first observed by Cohen-Tannoudji

[Cohen-Tannoudji98]. Thus, it is possible to create potentials to influence atomic motion by

appropriately tailoring an optical-field profile. Also, if the optical field is tuned sufficiently far

from the nearest atomic resonance, the interaction will be dominated by the dipole force, and

spontaneous forces will be negligible.

One particular configuration in which the dipole force is important is the optical lat-

tice, which is a periodic intensity pattern formed by the interference of multiple beams. Al-

though there are many different possible configurations of optical lattices [Jessen96], the one
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that plays a central role in the experiments in this work is the simplest possible lattice, a stand-

ing wave of light, which is a one-dimensional, linearly polarized optical lattice. We discuss this

configuration in detail in Chapter 2, but the basic result is that the atomic motion in such a

standing wave is that of a quantum pendulum (without periodic boundary conditions). This sys-

tem can then be viewed as an ideal one-dimensional crystal with long coherence times [Niu96;

Madison98a; Fischer01b], leading to interesting and clean studies of effects in condensed-

matter physics [Wilkinson96b; Dahan96; Fischer98; Madison98b; Madison99]. Viewed also

as a one-dimensional dynamical system, this system gives rise to interesting tunneling effects

[Morrow96; Bharucha97a; Madison97], including non-exponential decay [Wilkinson97] and the

quantum Zeno and anti-Zeno effects [Fischer01a].

1.4.2 Atom Optics and Quantum Chaos

The fields of quantum chaos and atom optics became “entangled” with the proposal by Gra-

ham, Schlautmann, and Zoller [Graham92] to observe dynamical localization in the deflection

of an atomic beam crossing through a phase-modulated optical lattice. It was realized here in

the group of Mark Raizen that the beam setup could be “collapsed” and performed with cold

atoms prepared by a MOT and exposed to a modulated optical lattice in place. An apparatus

using trapped sodium atoms was constructed [Robinson95b; Bharucha97b], and the manifes-

tations of dynamical localization [Moore94] and islands of stability (and other features in the

transition from classical stability to chaos) in phase space [Robinson95a] were studied in the

phase-modulated lattice. (It was also in these experiments that the “ballistic-expansion imaging

method” of measuring atomic momentum distributions was first employed. In this technique

the atoms expand freely after the lattice interaction until they have expanded far beyond the

initial MOT size, then they are frozen in place by optical molasses, and the distribution is pho-

tographed by a CCD camera.) In the phase-modulated system, the theoretical understanding

of dynamical localization came about through an approximate mapping onto the kicked-rotor

problem, and this system was soon also directly realized [Moore95]. In these experiments, the

dynamical evolution leading to localization was studied, along with the “quantum resonance”

phenomenon, which is expected to give rise to ballistic transport but was manifested as a late-
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time Gaussian distribution. The atomic dynamics in an amplitude-modulated standing wave,

which is the same system that we use in Chapter 6 to study chaos-assisted tunneling, were also

studied using this apparatus to address the necessity of considering quantum chaos in analyz-

ing a system as simple as atoms crossing transversely through an unmodulated optical lattice

[Robinson96]. The work in this first-generation sodium apparatus is discussed in more detail in

[Bharucha99], as well as in two dissertations [Robinson95b; Bharucha97b].

The next natural direction of the quantum-chaos experiments was to examine the ef-

fects of decoherence, now that the quantum suppression of chaos had been observed. As these

experiments involve transport to higher momenta than in the localized case, the sodium-based

experiment was not suitable to carry out these studies [Robinson95b]. To address these prob-

lems with the “momentum boundary” [Klappauf99], we constructed a second-generation ap-

paratus based on trapped cesium, which due to the longer wavelength of the atomic resonance

and larger atomic mass effectively yields a better fidelity to the δ-kicked rotor over a wider mo-

mentum range (see Section 4.4.4 for details). The quantum-chaos experiments carried out on

this new apparatus are reviewed in this dissertation as well as in Bruce Klappauf’s dissertation

[Klappauf98c], and meanwhile the sodium apparatus was put to good use in the tunneling and

solid-state experimental efforts described in the previous section. The destruction of localiza-

tion by amplitude noise in the kicks as well as dissipation due to the presence of a weak optical

molasses were observed in this experiment [Klappauf98b], where it was found that late-time en-

ergy diffusion was increased, and the momentum distributions made a transition from the local-

ized exponential profile to a classical-like Gaussian profile. Around the same time, the increased

energy growth due to spontaneous emission induced by the optical lattice itself was observed by

the group of Nelson Christensen [Ammann98], but it should be noted that there may be some

difficulties in interpreting the results of this latter experiment due to the influences of the classi-

cal momentum boundary and the stochastic dipole force [Habib98a]. We subsequently extended

this initial work on decoherence and showed that quantitative quantum-classical correspondence

at the level of expectation values and momentum distributions could be achieved with a suffi-

cient amount of amplitude noise, even in a manifestly quantum regime [Steck00; Milner00].
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This work on decoherence and correspondence in the kicked rotor is discussed in much more

detail in Chapter 4.

There have also been several other interesting avenues of experiments on quantum

chaos and quantum transport in atom optics. We revisited the quantum resonance phenomenon

using the cesium apparatus, and due to much improved signal resolution and noise levels over

the original study of [Moore95], we were able to resolve the ballistic component of the motion

[Oskay00]. There have also been related studies by the group of Keith Burnett [Oberthaler99;

Godun00] on the kicked rotor near a quantum resonance but modified by a constant acceler-

ation. Ballistic transport was likewise observed in these experiments, but the transport could

be made directional (asymmetric) due to the influence of the acceleration. Continuing in

the vein of global quantum nonintegrable transport, the suppression of diffusion by classical

cantori was studied by the Christensen group [Vant99], the effects of quasiperiodic kicking

were studied by a group at the Université des Sciences et Technologies de Lille [Ringot00],

and we provided experimental evidence for a universal theory of quantum diffusion by Jianxin

Zhong, Qian Niu, Roberto Diener, and others [Zhong01]. More recently, work in this area

has moved towards the study of mixed phase space using localized initial conditions. In this

context we have observed chaos-assisted dynamical tunneling [Steck01], and a collaboration

of researchers at NIST-Gaithersburg under the direction of William Phillips and Steven Rol-

ston and researchers at the University of Queensland under the direction of Gerard Milburn,

Halina Rubinsztein-Dunlop, and Norman Heckenberg have also observed dynamical tunneling

in a similar system (using a Bose-Einstein condensate) but in a more manifestly quantum and

strongly coupled regime [Hensinger01] (some earlier work of the Queensland group is discussed

in [Hensinger00]). Our work on chaos-assisted tunneling is described in detail in Chapter 6.

Finally, we have performed experiments on a modified version of the kicked-rotor system that

leads to spatial localization of the atoms, with applications to atom lithography. The results of

this work will be presented in future publications [Oskay01a; Oskay01b].
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2.1 Overview

In this chapter we will motivate the experiments in this dissertation by considering the basic

setup common to all of the experiments: the motion of an atom in a standing wave of far-detuned

light. The basic conclusion of this chapter is that under the proper conditions, it is possible

to ignore the internal electronic structure of the atom, and treat the atom as a point particle.

Furthermore, the “reduced” atom moves under the influence of the effective center-of-mass

Hamiltonian

Heff =
p2

2m
+ V0 cos(2kLx) , (2.1)

wherem is the atomic mass, kL is the wave number of the laser light, and the potential amplitude

V0 is proportional to the laser intensity and inversely proportional to the detuning from the near-

est atomic resonance (which in these experiments is one of the components of the cesium D2

spectral line). This Hamiltonian is familiar, as it is formally equivalent to the plane-pendulum

Hamiltonian. This motion is, of course, integrable, but this is nevertheless an important start-

ing point for the realization of nonintegrable systems, as both the amplitude and phase of the

potential can be modulated to realize a variety of 1 12 -degree-of-freedom systems.

We begin the analysis in Section 2.2, where we set up the problem of a two-level atom

interacting with a laser field. We then examine the dynamical equations of motion for the atom

and derive the atomic energy shift due to the field in Section 2.3. The adiabatic approximation,

which is necessary to decouple the internal and external dynamics (and thus ignore the internal

degrees of freedom), is reviewed in Section 2.4. In Section 2.5 we look at the deviations that can

occur from the idealized picture represented by Eq. (2.1), such as several dissipative processes

as well as the treatment of cesium (which has quite a complicated hyperfine level structure) as

a two-level atom. We also estimate the magnitudes of these corrections for the experiments in

this dissertation. Section 2.6 covers the more general case of when the two beams that form

the optical lattice differ in amplitude and frequency. We will see that the former difference can

be taken into account by using the geometric mean of the two intensities as a replacement for

the intensity in the identical-beam case, and the frequency difference is equivalent to a nonzero

velocity of the lattice. Finally, in Section 2.7, we examine some aspects of quantum motion in
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an optical lattice that will be important considerations for the experiments described in later

chapters. Specifically, we will examine the how the momentum excitations due to the lattice

are quantized in multiples of two photon recoil momenta (2�kL) and how this quantization

gives rise to Bragg scattering; we will also consider the band structure of the lattice, which is

important in using a lattice for quantum-state preparation; and we examine the consequence

of the lattice being an extended system, as opposed to a “true” pendulum that obeys periodic

boundary conditions over one period of the potential.

2.2 Atom-Field Interaction

We begin our treatment with a general description of the atom-field interaction. We consider the

one-dimensional problem of a two-level atom moving in a standing wave of light. The standing

wave is described by the sum of two traveling waves,

E(x, t) = ẑE0[cos(kLx− ωLt) + cos(kLx+ ωLt)]

= ẑE0 cos(kLx)
(
e−iωLt + eiωLt

)
=: E(+)(x, t) + E(−)(x, t) ,

(2.2)

where E(+) and E(−) are the positive- and negative-rotating components of the field, respec-

tively (i.e., E(±) ∼ e−i(±ωL)t),E0 is the amplitude of either one of the two constituent traveling

waves, and ωL is the laser frequency.

The atomic free-evolution Hamiltonian is then given by

HA =
p2

2m
+ �ω0|e〉〈e| , (2.3)

where the excited and ground internal atomic states are |e〉 and |g〉, respectively, and ω0 is the

frequency of the atomic resonance. The atom-field interaction Hamiltonian is given (in the

dipole approximation) by

HAF = −d · E , (2.4)

where d is the atomic dipole operator. Assuming that |ωL − ω0| � ωL + ω0, we can make the

rotating-wave approximation (RWA), where terms rotating at twice the optical frequencies are
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replaced by their zero average value, with the result

HAF = −d(+) · E(−) − d(−) · E(+)

= −d(+)
z E(−) − d(−)z E(+) ,

(2.5)

where we have decomposed the dipole operator into its positive- and negative-frequency parts,

d = d(+) + d(−)

= (a+ a†)〈e|d|g〉 ,
(2.6)

a := |g〉〈e| is the atomic lowering operator, and we have taken the dipole matrix element 〈e|d|g〉

to be real. We can also write the interaction Hamiltonian as

HAF =
�Ω
2
(aeiωLt + a†e−iωLt) cos kLx , (2.7)

where we have defined

Ω := −2〈e|dz|g〉E0

�
(2.8)

as the maximum Rabi frequency.

Before writing down the evolution equations, we make a transformation into the rotat-

ing frame of the laser field by defining the slowly varying excited state

|ẽ〉 := eiωLt|e〉 (2.9)

and the stationary field amplitudes

Ẽ(±) := e±iωLtE(±) . (2.10)

We can then rewrite the interaction Hamiltonian as

H̃AF = −d̃(+) · Ẽ(−) − d̃(−) · Ẽ(+)

=
�Ω
2
(ã+ ã†) cos kLx ,

(2.11)

where d̃(±) and ã are defined as d(±) and a were defined, but with |e〉 replaced by |ẽ〉. In making

the rotating-wave approximation, we have discarded the two terms that would have an explicit

time dependence of e±i2ωLt in Eq. (2.11), and in fact we have removed all of the explicit time

dependence from this problem. Notice also that |ẽ〉 is additionally an eigenstate of the internal
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part of HA, with eigenvalue �ω0 − �ωL. Hence, in terms of the rotating frame excited state, the

free atomic Hamiltonian becomes

H̃A =
p2

2m
− �∆L|ẽ〉〈ẽ| , (2.12)

where ∆L := ωL − ω0 is the detuning of the laser from the atomic resonance. Again, this

representation of the problem in the laser frame is interesting, because it shows that this ac

interaction is equivalent to the problem of two states separated in energy by �∆L interacting

with a dc electric field (after invoking the RWA).

2.2.1 Digression: Unitary Transformations and Field Operators

The result (2.12) also follows from formally applying the unitary transformation

U = exp (iωLt|e〉〈e|) , (2.13)

so that |ẽ〉 = U |e〉 (and |g̃〉 = U |g〉 = |g〉), and then using the transformation law for a Hamilto-

nian under a time-dependent, unitary transformation [Madison98b]:

H̃ = UHU † + i�(∂tU)U † . (2.14)

However, this transformation does not correctly reproduce the rotating-frame interaction Hamil-

tonian (2.11). The problem lies in the fact that we have ignored the operator nature of the

electric field. We can write the (single-mode) laser field as [Dalibard85]

E(+)(x, t) = ẑE aF cos(kLx) e−iωLt , (2.15)

where aF is the annihilation operator for the laser field,

aF =
∞∑
n=1

|n− 1〉〈n|
√
n , (2.16)

and E is a constant that can be written in terms of the mode volume of the field and the photon

energy [Scully97]. In terms of the quantized field, the combined Hamiltonian corresponding to

(2.3) and (2.4) becomes

H = HA +HAF

=
p2

2m
+ �ω0|e〉〈e| +

�g

2
(
aa†Fe

iωLt + a†aFe
−iωLt

)
cos kLx ,

(2.17)
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where g := −2〈e|dz|g〉E/�. This Hamiltonian is in the interaction picture with respect to

the field evolution [Loudon83], because the field operators carry the explicit time dependence

of the field (written out explicitly here). Thus, in addition to the transformation (2.13), we

transform out of the interaction picture by applying the second transformation

UI = exp (iHFt/�) , (2.18)

where HF is the field Hamiltonian, given by

HF = �ωL

(
a†FaF +

1
2

)
. (2.19)

The resulting Hamiltonian is

H̃ =
p2

2m
+ �ω0|ẽ〉〈ẽ|+

�g

2
(
ãã†F + ã

†ãF

)
cos kLx+ �ωL

(
ã†FãF +

1
2

)

= H̃A + H̃AF + H̃F ,

(2.20)

where the tildes indicate operators after transformation. This Hamiltonian is then in the Schröd-

inger picture with respect to the field, where the field time dependence is generated by the

presence of HF. In the classical limit, the average photon number N of the laser field is very

large, and in a coherent state the fractional uncertainty in N becomes vanishingly small. Hence,

the field operators aF can be replaced by
√
N , and the field Hamiltonian reduces to a constant

energy offset (and thus can be neglected). Upon making the identification Ω = g
√
N , we also

recover the correct form for the rotating interaction Hamiltonian (2.11). Hence we have shown

that the transformations (2.9) and (2.10) arise formally from different representations of the

quantized field.

With the expression (2.15) for the field operator in hand, we make one final remark

about the RWA. Since E(+) annihilates a photon from the laser field, the terms left in Eq. (2.5)

correspond to raising the atomic state while lowering the field state (d(−)z E(+)) and lowering

the atomic state while raising the field state (d(+)
z E(−)). Invoking the RWA, then, amounts to

keeping only the energy-conserving (resonant) terms in the interaction Hamiltonian.
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2.3 Schrödinger Equation

Since we assume that the detuning from resonance is large (i.e., ∆L � Γ, where 1/Γ is the

natural lifetime of |e〉), we will neglect spontaneous emission and use the Schrödinger equation,

(H̃A + H̃AF)|ψ〉 = i�∂t|ψ〉 , (2.21)

to describe the atomic evolution. It is convenient to decompose the state vector |ψ〉 into a

product of internal and external states,

|ψ〉 = |ψe(t)〉 |ẽ〉 + |ψg(t)〉 |g〉 (2.22)

where the |ψi(t)〉 are states in the center-of-mass space of the atom. In the following, we will

associate all time dependence of the atomic state with the center-of-mass components of the

state vector. Defining the coefficients ψi(x, t) := 〈x|ψi(t)〉, the equation of motion for the wave

function 〈x|ψ〉 becomes

i�(∂tψe|ẽ〉 + ∂tψg|g〉) =
p2

2m
(ψe|ẽ〉 + ψg|g〉)− �∆Lψe|ẽ〉 +

�Ω
2
(ψe|g〉+ ψg |ẽ〉) cos kLx .

(2.23)

Separating the coefficients of |ẽ〉 and |g〉, we obtain the coupled pair of equations

i�∂tψe =
p2

2m
ψe +

(
�Ω
2
cos kLx

)
ψg − �∆Lψe

i�∂tψg =
p2

2m
ψg +

(
�Ω
2
cos kLx

)
ψe .

(2.24)

for the wave functions ψi(x, t).

At this point we mention that it is possible to find energy eigenstates of the coupled

atom-field system. From (2.24), we can find the new (internal) eigenstates by diagonalizing the

matrix 
 −�∆L

�Ω
2
cos kLx

�Ω
2
cos kLx 0


 , (2.25)

where we have ignored the center-of-mass contributions to the Hamiltonian. The eigenvalues

are given by

E1,2 = −�∆L

2
± �

2

√
∆2

L + Ω2 cos2 kLx , (2.26)
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with corresponding eigenvectors [Cohen-Tannoudji92; Meystre96]

|1〉 = sin θ|g〉+ cos θ|ẽ〉
|2〉 = cos θ|g〉 − sin θ|ẽ〉 .

(2.27)

By convention the state |1〉 has the higher energy, and the angle θ is defined via

tan 2θ = −Ωcos kLx

∆L

(
0 ≤ θ < π

2

)
. (2.28)

These states are known as the dressed states of the atom, and we see from Eq. (2.26) that the

coupling to the field causes an avoided crossing in the energy level structure of the atom. For

∆L � Ω, we can expand the dressed-state energies (2.26), with the result

E1,2 = −�∆L

2
± �∆L

2
± �Ω2

4∆L

cos2 kLx+ O
(
Ω4

∆3
L

)
. (2.29)

In this limit, the atom is essentially in only one of the dressed states, and so it is clear that the

atom experiences an energy shift that depends sinusoidally on position. This shift in the energy

levels is the ac Stark shift, and we will treat this phenomenon more precisely and directly in the

next section, in the limit of large∆L.

2.4 Adiabatic Approximation

The equations of motion (2.24) can be greatly simplified by using the adiabatic approximation.

We can motivate this approximation by examining the various time scales in the evolution of ψe

and ψg. The kinetic-energy terms in Eqs. (2.24) induce variations on a time scale corresponding

to several recoil frequencies ωr := �k2L/2m, where ωr = 2π · 2.07 kHz for cesium. However, the

pump-field terms induce motion on a time scale corresponding to the Rabi frequency (typically

from zero to several hundred MHz), and the free evolution term induces motion of ψe on a time

scale corresponding to∆L (typically several to manyGHz); together, these terms induce internal

atomic oscillations at the generalized Rabi frequency Ωgen(x) :=
√
Ω2 cos2 kLx+∆2

L � ∆L.

Furthermore, in between these long and short time scales of external and internal atomic motion

lies the damping time scale due to coupling with the vacuum, which corresponds to the natural

decay rate Γ (for cesium, Γ/2π = 5.2 MHz). Because we are primarily interested in the slow

center-of-mass atomicmotion, and the internal atomic motion takes place for times much shorter
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than the damping time, it is a good approximation to assume that the internal motion is damped

instantaneously to equilibrium (i.e., ∂tψe = 0, because ψe is the variable that carries the natural

internal free-evolution time dependence at frequency ∆L, whereas ψg has no natural internal

oscillation, because the state |g〉 is at zero energy). This approximation then gives a relation

between ψe and ψg: (
�∆L − p2

2m

)
ψe =

(
�Ω
2
cos kLx

)
ψg . (2.30)

We can then use this constraint to eliminate ψe in the second of Eqs. (2.24), with the result

i�∂tψg =
(
p2

2m

)
ψg +


 �Ω2

4
(
∆L −

p2

2m�

) cos2 kLx


ψg . (2.31)

We have already assumed that �∆L � p2/2m, so we can ignore the momentum contribution to

the cosine amplitude, and this equation becomes

i�∂tψg =
(
p2

2m

)
ψg + V0 cos(2kLx)ψg , (2.32)

where we have shifted the zero of the potential energy, and

V0 :=
�Ω2

8∆L

=
|〈e|dz|g〉|2E2

0

2�∆L

.

(2.33)

Since the detuning is large, nearly all the population is contained in |g〉, so the excited state

completely drops out of the problem. Hence, the atom obeys the Schrödinger equation with the

center-of-mass Hamiltonian

H =
p2

2m
+ V0 cos(2kLx) , (2.34)

and the atom behaves like a point particle in a sinusoidal potential, where the strength of the

potential is given by (2.33). From Eq. (2.31), we see that the atomic momentum leads to a very

small correction to the well depth V0.

2.4.1 Master Equation Approach

It is also instructive to make the adiabatic approximation from the viewpoint of a master equa-

tion, where we can more explicitly see the effects of damping on the atomic motion. The master
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equation for the atomic evolution (i.e., the optical Bloch equations generalized to include center-

of-mass motion) has the general form [Cohen-Tannoudji77]

∂tρ̃(t) = − i
�
[H̃A + H̃AF, ρ̃(t)] + Vdiss ρ̃(t) (2.35)

in the rotating basis, where the density operator is given by ρ̃ := |ψ〉〈ψ|, with |ψ〉 as in (2.22).

In this equation, the commutator describes the Hamiltonian evolution of the system, and the

dissipation operator Vdiss describes spontaneous emission. We can write out the effect of the

dissipation operator more explicitly, with the result [Dum92]

∂tρ̃(t) = − i
�
(H̃eff ρ̃(t) − ρ̃(t)H̃†eff)

+ Γ
∫
dΩfsc(θ, φ)eikLx sin θ cosφaρa†e−ikLx sin θ cosφ ,

(2.36)

where the effective, non-Hermitian Hamiltonian is given by

H̃eff = H̃A + H̃AF − i�Γ
2
|ẽ〉〈ẽ| , (2.37)

fsc(θ, φ) is the angular distribution of the scattered light, and eikLx sin θ cosφ is the momentum-

shift operator (projected along the x-axis) that describes the photon recoil of the atom as it

returns to the ground state. Note that in writing down (2.37), we have assumed purely radiative

damping. The non-Hermitian nature of this effective Hamiltonian accounts for the damping

in the system, and causes the total population to decay; the ground-state creation term (the

last term in (2.36)) returns the lost population to the ground state. We can then write out the

equations for the density matrix elements ρ̃ij(x, x′, t) := 〈x|〈i|ρ̃|j〉|x′〉 as

∂tρ̃gg = − i
�

[
p2

2m
, ρ̃gg

]
− iΩ
2
(cos kLxρ̃eg − ρ̃ge cos kLx)

+ Γ
∫
dΩfsc(θ, φ)eikLx sin θ cosφρ̃eee−ikLx sin θ cosφ

∂tρ̃ee = − i
�

[
p2

2m
, ρ̃ee

]
+
iΩ
2
(cos kLxρ̃eg − ρ̃ge cos kLx)− Γρ̃ee

∂tρ̃ge = − i
�

[
p2

2m
, ρ̃ge

]
−
(
Γ
2
+ i∆L

)
ρ̃ge −

iΩ
2
(cos kLxρ̃ee − ρ̃gg cos kLx)

∂tρ̃eg = − i
�

[
p2

2m
, ρ̃eg

]
−
(
Γ
2
− i∆L

)
ρ̃eg −

iΩ
2
(cos kLxρ̃gg − ρ̃ee cos kLx) .

(2.38)
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We again assume that ∆L � Γ and note that the equations have fast internal driving terms

(with frequencies comparable to or greater than Γ) and slow center-of-mass terms; this time,

however, the equations of motion for the coherences (which are responsible for the population

oscillations) have explicit damping terms. Since we are interested in the slow external motion,

we can use the fact that the steady-state solution for ρ̃ee is of order (Γ/∆L)2, whereas the steady

state solutions for the coherences ρ̃eg and ρ̃ge are of order Γ/∆L [Loudon83], so that we can

neglect the ρ̃ee terms on the right-hand sides of these equations. Now, we will assume that the

quickly rotating coherences are damped to equilibrium on a time scale short compared to the

external motion of interest, and hence set ∂tρ̃ge = ∂tρ̃eg = 0. Doing so leads to the adiabatic

relations

ρ̃ge =
Ω
2∆L

ρ̃gg cos kLx

ρ̃eg =
Ω
2∆L

cos kLxρ̃gg ,

(2.39)

where we have neglected the momentum and Γ terms in comparison to the ∆L term. Substi-

tuting Eqs. (2.39) into the equation of motion for ρ̃gg (and neglecting the ρ̃ee term), we find

∂tρ̃gg = − i
�

[
p2

2m
+

�Ω
4∆L

cos2 kLx, ρ̃gg

]
. (2.40)

This equation is simply the equation of motion for ρ̃gg under the Hamiltonian

Hρ̃ =
p2

2m
+

�Ω2

4∆L

cos2 kLx , (2.41)

which is equivalent to the Hamiltonian (2.34) when the zero-point of the potential is shifted.

Notice that this adiabatic-elimination procedure is similar to the one commonly used to study

laser cooling and trapping, where the excited state is eliminated, but spontaneous emission is not

ignored; this procedure leads to a Fokker-Planck equation of motion for the atomic distribution

[Stenholm86].

From this approach, it is clear that the adiabatic approximation is good after a time on

the order of 1/Γ, when the coherences have damped away. After this initial transient, the adi-

abatic approximation remains good as long as any modulations of the standing wave take place

over a time long compared to 1/Ωgen. This is clear from the dressed-state result (2.26), because
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such modulations will not excite transitions between the dressed states and thus cause the adi-

abatic approximation to break down. This argument thus sets limits on experiments where the

lattice is pulsed, as in the atom-optical realization of the kicked rotor problem in Chapter 4.

2.5 Complications

Until this point we have argued that in the limit of large detuning ∆L (compared to both the

maximum Rabi frequency Ω and the atomic lifetime Γ), the motion of an atom in a standing

wave of light is equivalent to a point particle moving conservatively in a sinusoidal potential.

In this section we will discuss several ways in which the real atomic system differs from this

idealized description.

2.5.1 Spontaneous Emission

In the parameter regime that we have discussed above, it is possible to use the results we have

derived so far to estimate the rate of spontaneous emission due to the far-detuned light. From

the form of the master equation (2.38), we see that the total rate of spontaneous emission is

simply the product of the decay rate Γ and the excited-state population ρ̃ee = |ψe|2 (integrated

over position). From Eq. (2.30), we have, after ignoring the momentum term,

|ψe|2 =
Ω2

4∆2
L

cos2 kLx|ψg|2 . (2.42)

Performing a spatial average and using |ψg|2 � 1, we find the scattering rate

Rsc =
ΓΩ2

8∆2
L

. (2.43)

A more careful treatment of the spontaneous emission rate yields (see Appendix A)

Rsc =
(Γ/2)Ω2 cos2 kLx

2(∆2
L + Γ2/4) + Ω2 cos2 kLx

. (2.44)

The momentum recoils from the emitted photons results in atomic momentum diffusion at the

rate

Dse =
�
2k2LΓζ2

4m
Ω2 cos2 kLx

2(∆2
L + Γ2/4) + Ω2 cos2 kLx

, (2.45)
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where the kinetic energy diffusion coefficient D is defined such that 〈p2x/(2m)〉 grows asymp-

totically asDt. Also, ζ2 is the mean-square projection of the photon recoil along the direction of

the standing wave (for radiation from a pure linearly oscillating dipole, ζ2 = 2/5; for light near

the D2 line of cesium, where the ground-state sublevels in either the Fg = 3 or the Fg = 4

manifold are uniformly populated, and the detuning ∆L is large compared to the excited state

hyperfine splittings, ζ2 ≈ 0.34).

2.5.2 Stochastic Dipole Force

The dipole force on the atoms in the standing wave can also lead to momentum diffusion. The

dipole moment of the atom fluctuates due to spontaneous emission, and this fluctuating dipole

interacts with the field gradients in the standing wave to produce momentum diffusion at a rate

[Gordon80; Balykin95]

Dsdf =
�
2k2LΓ
2m

Ω2 sin2 kLx

[2(∆2
L + Γ2/4) + Ω2 cos2 kLx]3

×
[
2
(
∆2

L +
Γ2

4

)2
+
(
3
4
Γ2 −∆2

L

)
Ω2 cos2 kLx+

3
2
Ω4 cos4 kLx+

Ω6

Γ2
cos6 kLx

]
.

(2.46)

In writing down the diffusion rates (2.45) and (2.46), we have assumed nearly zero atomic ve-

locity and ignored the velocity dependences of the diffusion rates [Balykin95].

2.5.3 Nonlinearities of the Potential

In Section 2.3, we saw how the center-of-mass potential

V (x) =
�Ω2

8∆L

cos 2kLx (2.47)

arises from the energy shift of the dressed states (to lowest order in Ω2) and the assumption that

the atom is in only one dressed state. Here we describe the corrections to this potential due to

the nonlinear dependence of the dressed-state energies on Ω2 as well as the mixed steady-state

populations of the dressed states. The potential obtained from the optical Bloch equations is

[Gordon80; Dalibard85; Balykin95]

V (x) =
�∆L

2
log
(
1 +

Ω2

2(∆2
L + Γ2/4)

cos2 kLx

)
. (2.48)
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Since we are primarily interested in the limit where ∆L is large compared to both Γ and Ω, we

can extract the first few Fourier components of (2.48),

V (x) = V02 cos(2kLx) + V04 cos(4kLx) + V06 cos(6kLx) + . . . , (2.49)

where, if we define the (maximum) saturation parameter s as

s :=
Ω2

2(∆2
L + Γ2/4)

, (2.50)

we find

V02 = (�∆L/2)
[
2 + 4

(
1−

√
1 + s

)
/s
]

V04 = (�∆L/2)
[
− (8 + 8s+ s2) + 4(2 + 3s+ s2)/

√
1 + s

]
/s2

V06 = (�∆L/2)
[
2(32 + 48s+ 18s2 + s3)

− 4(16 + 32s+ 19s2 + 3s3)/
√
1 + s

]
/(3s3) .

(2.51)

For small s, these become

V02 =
�∆L

2

[
1
2
s− 1

4
s2 +

5
32
s3 − 7

64
s4 +O(s5)

]

V04 =
�∆L

2

[
− 1
16
s2 +

1
16
s3 − 7

128
s4 +O(s5)

]

V06 =
�∆L

2

[
1
96
s3 − 1

64
s4 + O(s5)

]
.

(2.52)

Hence, the corrected potential to order Ω4 is

V (x) =
(

�Ω2

8∆L

− �Ω4

32∆3
L

)
cos 2kLx−

�Ω4

128∆3
L

cos 4kLx+O
(
Ω6

∆5

)
, (2.53)

where we have ignored the Γ dependence in s. The Stark shift is due to stimulated Raman and

Rayleigh transitions among the motional states of the atom induced by the field; since these

corrections are higher order in Ω2, we can associate them with higher-order photon processes.

2.5.4 Velocity Dependence

In addition to diffusive effects and the saturation of the light-induced potential, there are

velocity-dependent forces associated with motion in the standing wave. If we assume small

velocities (kLv � Γ), then diabatic transitions between the dressed states are negligible, and

the force to lowest order in vx is [Gordon80; Balykin95; Dalibard85; Metcalf99]

Fv = vxx̂2�∆Lk
2
L sin

2 kLx
Γ2Ω2[2(∆2

L + Γ/4)− Ω2 cos2 kLx]−Ω6 cos4 kLx

Γ[2(∆2
L +Γ2/4) + Ω2 cos2 kLx]3

. (2.54)
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For small Ω2, this force can be understood in terms of optical molasses, where Doppler shifts

cause an imbalance of spontaneous scattering between the two beams (leading to a cooling force

for red detunings) [Metcalf99]. For largerΩ2, when the last term in (2.54) is dominant, this force

can be understood in terms of the local steady-state dressed-level populations lagging behind the

atomic position [Dalibard85]; furthermore, in this regime, the sign of the force is opposite to the

weak-field case, so that a red detuning actually leads to a heating force.

2.5.5 Multilevel Structure of Cesium

The results that we have derived in this chapter have assumed a two-level electronic structure

of the atom. The cesium D2 line, however, is far more complicated than a two-level atom as a

result of hyperfine structure (Appendix A). The ground state is split into two hyperfine levels,

F = 3 and F = 4 (where F is the hyperfine quantum number), which are separated by 9.2

GHz. Each of these levels additionally has 2F + 1 magnetic sublevels (which are degenerate in

the absence of fields), labeled by the quantum numbermF . The excited state is split into four

sublevels, F = 2, 3, 4, and 5, with splittings between adjacent levels around 200 MHz, each

with a corresponding set of magnetic sublevels.

From this proliferation of states it is not at all obvious that the two-level model is appro-

priate. The first important step in simplifying this structure is that the atoms should be initially

optically pumped into one of the ground state levels (but not necessarily into only one magnetic

sublevel). Then the atoms are only coupled to three of the excited states due to angular momen-

tum conservation (i.e., F ′ = 2, 3, or 4 are excited for atoms pumped into the F = 3 ground state

manifold, and F = 4 atoms can be excited to F ′ = 3, 4, or 5). In the limit where the detuning

∆L is large compared to the excited-state hyperfine splittings, the excited states can be regarded

as degenerate. In this limit, and for a linearly polarized standing wave, a symmetry then applies,

which makes the dipole moment independent ofmF , and it has the value 2.2×10−29 C ·m (see

Appendix A for details).

The detuning is not arbitrarily large, however, with the consequence that the effective

lattice potential depth V0 depends slightly onmF [Mathur68]. This effect can be accounted for
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by explicitly summing over the excited states to arrive at an effective dipole moment for each

sublevel:

d2eff(mF )
∆L

=
∑
F ′

|〈F mF |dz|F ′ mF 〉|2
∆F ′

. (2.55)

Here, ∆F ′ is the laser detuning from the |F mF 〉 −→ |F ′ mF 〉 transition, and ∆L is now the

detuning with respect to an arbitrary reference point (since it drops out of the calculation of V0).

This dipole moment can then be used within the context of the two-level atom model.

2.5.6 Collisions

With experiments performed in a MOT, one obvious deviation from the single-atom picture is

due to collisions between the atoms in the MOT cloud. We can give very rough estimates for

the collision rate for the experimental conditions in a cesium MOT. The s-wave collision cross

section for cesium atoms polarized in the F = 4, mF = 4 state was measured to be 5 × 10−11

cm2 at a temperature of 5 µK in [Arndt97]. Note that this cross section actually overestimates

the situation in the unpolarized case. For the experiments in Chapter 4, the MOT density was

1011 cm−3, and the mean velocity was around 3 cm/s for the initial condition. These values

lead to an estimated collision probability of only 2%/ms. For the experiments in Chapter 6, the

MOT density was much lower, around 108 cm−3, as a result of velocity selection. After state

preparation, the initial mean velocity was 0.8 cm/s, and thus the collision probability in this case

was the much smaller 0.4%/s.

2.5.7 Experimental Values

To illustrate the magnitudes of the effects that we have discussed in this section, we calculate

the values of these corrections (shown in Table 2.1) for several different sets of experimental

parameters. The first set of parameters corresponds to the experiments in Chapter 4, where the

optical lattice was pulsed to realize the kicked rotor. In these experiments, the lattice was pulsed

on for tp = 300 ns at a time; the maximum intensity used corresponds to a Rabi frequency of

Ω/2π = 590 MHz, and the lattice detuning was −6.1 GHz from the F = 4 −→ F ′ = 5

transition. The second set of parameters describes the chaos-assisted tunneling experiments
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of Chapter 6, where the lattice amplitude was modulated as a cos2 function in time. A typical

modulation period T here was 20 µs, the detuning was∆L/2π = −50 GHz and a typical (time-

averaged) Rabi frequency used was Ω/2π = 110 MHz. The third set of parameters also applies

to the chaos-assisted tunneling experiments, but to the state-preparation phase where the atoms

evolved in a somewhat deeper lattice (Ω/2π = 250 MHz), but shorter time scales apply, since

the atoms evolved in the full lattice for 6 µs (and for an additional 300 µs as the lattice was

gradually ramped up from zero intensity). The design of an experiment necessarily entails many

compromises, but we were able to keep the effects discussed here to a very acceptable minimum.

Table 2.1: Numerical values for the various effects described in Section 2.5. The three columns

correspond to the three different experimental parameter regimes described in the text.

Parameter set Kicked Rotor Tunneling(1) Tunneling(2)

Rsc(3) 1.1%/tp(4) 0.040%/T (5) 0.010%/µs

Dsc
(6) 0.0039~ωr/tp 1.3 × 10−4 ~ωr/T 3.5 × 10−5 ~ωr/µs

Dsdf
(7) 0.012~ωr/tp 4.0 × 10−4 ~ωr/T 1.0 × 10−4 ~ωr/µs

|(V02 − V0)/V0|(8) 0.23% 1.2 × 10−6 6.3 × 10−6

|V04/V0|(9) 0.058% 3.0 × 10−7 1.6 × 10−6

Fv
(10) 5.3 × 10−8 ~kL/tp −1.0 × 10−11 ~kL/T −2.7 × 10−12 ~kL/µs

|∆V0(mF )/V0(0)|(11) 1.6% 0.11% 0.11%

Collision rate ∼0.04%/T (12) ∼8 × 10−8/T ∼4 × 10−9/µs

(1)Modulated standing wave interaction portion of the chaos-assisted tunneling experiment.
(2)State-preparation portion of the chaos-assisted tunneling experiment.
(3)Spontaneous emission rate, averaged over a lattice period.
(4)The pulse width tp = 300 ns is the relevant time scale for the kicked-rotor experiment.
(5)T = 20 µs is a typical relevant time scale for the chaos-assisted tunneling experiment.
(6)Rate of diffusion due to spontaneous emission, averaged over a lattice period.
(7)Rate of diffusion due to stochastic dipole fluctuations, averaged over a lattice period.
(8)Correction to potential amplitude (relative to V0).
(9)Amplitude of second harmonic potential component (relative to V0).
(10)Velocity-dependent force, averaged over a lattice period for the recoil velocity (vr = 3.5 mm/s).
(11)Largest relative magnetic sublevel shift of V0, normalized to the value formF = 0.
(12)The relevant time scale for this process is the T = 20 µs period of the potential.
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2.6 Generalization to Two Nonidentical Traveling Waves

We now generalize the results derived so far to the case where the two traveling waves have

different amplitudes and frequencies. In this case, the electric field is

E(x, t) = ẑ[E01 cos(kL1x− ωL1t) + E02 cos(kL2x+ ωL2t)]

= ẑ
(
E01 e

i(kL1x−δLt/2) +E02 e
−i(kL2x−δLt/2)

)
e−iωLt + c.c.

=: E(−)(x, t) + c.c. ,

(2.56)

where ωL := (ωL1+ωL2)/2 is the mean laser frequency, δL := ωL1−ωL2 is the frequency splitting

between the two traveling waves, and we assume that |δL| � |∆L|, with ∆L := ωL − ω0. Then,

in the rotating-wave approximation, the interaction Hamiltonian becomes

H̃AF = −d̃(+) · Ẽ(+) − d̃(−) · Ẽ(−)

=
�

2

(
Ω(x, t)a† + Ω∗(x, t)a

)
,

(2.57)

where d̃ and Ẽ are defined as before, and the time- and space-dependent Rabi frequency is

defined by

Ω(x, t) := −〈e|dz|g〉
�

(
E01e

i(kL1x−δLt/2) + E02e
−i(kL2x−δLt/2)

)
. (2.58)

Writing out the Schrödinger equation yields the two coupled equations

i�∂tψe =
p2

2m
ψe +

�

2
Ω(x, t)ψg − �∆Lψe

i�∂tψg =
p2

2m
ψg +

�

2
Ω∗(x, t)ψe .

(2.59)

Making the adiabatic approximation gives the relation

�∆Lψe =
�

2
Ω(x, t)ψg , (2.60)

and hence yields the equation of motion for the ground-state amplitude,

i�∂tψg =
(
p2

2m

)
ψg +

�

4∆L

|Ω(x, t)|2ψg . (2.61)

From Eq. (2.58), we find that

|Ω(x, t)|2 = |〈e|dz|g〉|2
�2

∣∣∣E01e
i(kL1x−δLt/2) +E02e

−i(kL2x−δLt/2)
∣∣∣2

=
|〈e|dz|g〉|2

�2

[
|E01|2 + |E02|2 + 2E01E02 cos(2kLx− δLt)

]
,

(2.62)
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where kL := (kL1 + kL2)/2. Hence, we see that the atom obeys the center-of-mass Schrödinger

equation (i�∂tψg = Hψg), where the Hamiltonian, after a potential offset has been subtracted,

is given by

H =
p2

2m
+ V0 cos(2kLx− δLt) , (2.63)

and

V0 =
|〈e|dz|g〉|2E01E02

2�∆L

. (2.64)

Thus, the motion is the same as before, except that the standing wave moves with velocity

δL/2kL, and the potential depth is proportional to the geometric mean of the two traveling wave

intensities. The velocity associated with the frequency difference is intuitive, as in a frame of

reference moving with respect to an optical lattice, the two beams would be Doppler shifted in

opposite senses, and would thus appear to have different frequencies.

2.7 Quantum Dynamics in a Stationary Standing Wave

Now that we have derived the equations of motion for an atom in an optical lattice, we will give

an introduction to some aspects of the dynamics in the lattice that will be important in later

chapters. Before continuing, though it is worth providing a set of scaled units in which to work.

In order to simplify the Hamiltonian (2.34), we begin by noting that we have the freedom to

independently rescale the coordinates to eliminate redundant parameters. There is a natural

choice for the position scaling,

x′ = 2kLx, (2.65)

since the natural length scale is the λ/2 period of the standing-wave potential. In the pendulum,

there is no explicit time scale that must be eliminated, so we are free to rescale such that Planck’s

constant is effectively unity. Thus, demanding that [x′, p′] = i, we find that

p′ =
p

2�kL

. (2.66)

Using these scalings in the unscaled Hamiltonian (2.34), we find

H ′ =
p′2

2
+ αp cosx′ (2.67)
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upon identifying 8�ωr as the natural energy scale (recall that ωr = �k2L/2m), so that αp =

V0/(8�ωr) and H ′ = H/(8�ωr). Notice that this energy scaling implies a time scaling of t′ =

8ωrt, since we have already determined how action is scaled. In what follows we will drop the

primes on the scaled units, and on occasion we will use unscaled units to emphasize particular

points.

2.7.1 Bragg Scattering

The quantum-pendulum dynamics show a feature that is distinctly nonclassical: the momentum

transferred from the potential to the atoms is quantized. To see this directly, we consider the

Schrödinger equation in scaled units,

i∂t|ψ〉 =
(
p2

2
+ αp cosx

)
|ψ〉 . (2.68)

In the momentum representation, where ψ(p) := 〈p|ψ〉, the Schrödinger equation can be rewrit-

ten as

i∂tψ(p) =
p2

2
ψ(p) +

αp
2
[ψ(p + 1) + ψ(p− 1)] . (2.69)

This form follows from either recognizing exp(ikx) as a momentum-displacement operator, or

by carrying out an explicit Fourier transform of the equation from the position to the momentum

representation. So, the evolution in the standing wave imposes a “ladder” structure in momen-

tum, such that an atom beginning in a plane-wave state |p〉 can only subsequently occupy the

states |p + n〉 for integer n. In unscaled units, the quantization of the momentum is in mul-

tiples of 2�kL, which has a clear interpretation in terms of the stimulated scattering of lattice

photons: if the atom absorbs a photon that was traveling in one direction and then re-emits it

into the counterpropagating mode, the atom will recoil, changing its momentum by twice the

photon momentum, or by 2�kL. Of course, the argument that we just considered was based on

a classical treatment of the field, so it is the spatial periodicity of the potential that imposes the

ladder structure in this model. However, as we will see in Chapter 5, the momentum transfer

to the atoms can be viewed as a stimulated Raman transition between different motional states

(say, |p〉 and |p + 1〉). The coupling between these two levels is described by a Raman Rabi
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frequency (as in the two-level atom), given by

ΩR =
Ω1Ω2

2∆L

, (2.70)

where Ω1,2 are the Rabi frequencies associated separately with each traveling-wave component

of the standing wave, and ∆L is the mutual detuning to the atomic excited state (the relative

frequency difference is constrained by energy conservation to be the splitting between the mo-

tional states). To connect with the notation that we have already used, Ω1 = Ω2 = Ω/2 for the

case of identical traveling waves, so that �ΩR = V0, and thus V0 also represents the strength of

the Raman couplings.

The two-photon, stimulated Raman transition is an example of a Bragg scattering pro-

cess [Martin88; Giltner95; Kozuma99]. In fact, it is the simplest (“first-order”) form of Bragg

scattering; in general, nth-order Bragg scattering is a 2n-photon transition spanning an interval

of 2n�kL in momentum. The term “Bragg scattering” applies to the weakly coupled regime,

where the intermediate states are not appreciably populated, and so the transition between the

two distant momentum states can be treated as a two-level problem. In this regime, classical

transport between these distinct momentum regions is forbidden, as the classical potential is not

sufficiently strong to cause a correspondingly large change in the classical momentum. As such,

Bragg scattering is an example of dynamical tunneling, which is quantum tunneling between re-

wL

4wr

p = 0

Lp = 2hÑkLp = -2hÑk

Figure 2.1: Level diagram for second-order Bragg scattering. This process occurs as a pair of two-

photon Raman scattering processes, coupling the 2�kL momentum level to the −2�kL level.

The Bragg treatment is valid when the two-photon Rabi frequency ΩR is small compared to the

detuning 4ωr from the intermediate state, which can then be adiabatically eliminated from the

problem.
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gions in phase space between which classical transport is forbidden, but by the dynamics (here,

the nature of asymptotically free-particle motion) rather than by a potential barrier.

Although the potential has a small amplitude, quantum coherence can build up as the

atoms sample the potential and cause the atoms to significantly change their motion. We will

illustrate this process by considering the relatively simple case of second-order Bragg scattering,

and then we will generalize our results to the nth-order case. We consider the case where the

standing wave is stationary, so that only the states |−2�kL〉 and |2�kL〉 are resonantly coupled

(we will stick to unscaled units for this derivation to emphasize the connection to the “quantum

optics” view of the atomic motion) in the limit of small ΩR. No other states will be substantially

coupled by these fields, unless the Raman Rabi frequency is large enough to power-broaden the

off-resonant transitions, which would not correspond to the Bragg regime. The relevant energy-

level diagram is shown in Fig. 2.1, which shows that the detuning from the |0〉 motional state

is simply the kinetic-energy shift. Neglecting couplings to other states (which are even further

detuned than the |0〉 state), the Schrödinger equation for the three coupled momentum states

then becomes

i�∂tψ(−2�kL, t) =
(2�kL)2

2m
ψ(−2�kL, t) +

�ΩR

2
ψ(0, t)

i�∂tψ(0, t) =
�ΩR

2
[
ψ(−2�kL, t) + ψ(2�kL, t)

]
i�∂tψ(2�kL, t) =

(2�kL)2

2m
ψ(2�kL, t) +

�ΩR

2
ψ(0, t) .

(2.71)

Adding an energy offset of −4�ωr, the equations become

i�∂tψ(±2�kL, t) =
�ΩR

2
ψ(0, t)

i�∂tψ(0, t) =
�ΩR

2
[
ψ(−2�kL, t) + ψ(2�kL, t)

]
− 4�ωrψ(0, t) .

(2.72)

Now we assume that ΩR � 4ωr, so that the population in the |0〉 state is O(Ω2
R/ω

2
r ) and hence

negligible. Additionally, we can make an adiabatic approximation for the evolution of the |0〉

state, by formally setting ∂tψ(0, t) = 0, as we did in Section 2.4. Again, though, this is a shortcut

for considering the density-matrix picture and replacing the rapidly-varying coherences with

their locally average value (although this procedure is a result of coarse-graining here, rather
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than radiative damping as in the previous treatment). Doing so leads to the adiabatic relation

4ωrψ(0, t) =
ΩR

2
[
ψ(−2�kL, t) + ψ(2�kL, t)

]
, (2.73)

which can be used to eliminate the intermediate state, resulting in a two-level evolution:

i�∂tψ(±2�kL, t) =
�Ω2

R

16ωr

[
ψ(±2�kL, t) + ψ(∓2�kL, t)

]
. (2.74)

Hence the second-order Bragg Rabi frequency is ΩB,2 = Ω2
R/8ωr. (The first term represents

a Stark shift of ΩB,2/2, while the second term represents the Rabi-type coupling.) Comparing

this expression to the form (2.70) for the two-photon Rabi frequency, we see that this second-

order Bragg process can be viewed also as a Raman process of two Raman transitions, where the

detuning to the intermediate state ∆L is identified as 4ωr.

Continuing in this manner, the Bragg rate for nth-order scattering from n�kL to −n�kL

is given by [Giltner95]

ΩB,n =
ΩnR

2n−1
n−1∏
k=1

δk

, (2.75)

where δk is the detuning of the kth intermediate motional state. Notice that the intermediate

detunings are given by [n2 − (n − 2)2]ωr, [n2 − (n − 4)2]ωr, . . . , [n2 − (2 − n)2]ωr, so that this

Bragg frequency can be written as

ΩB,n =
ΩnR

(8ωr)n−1[(n− 1)!]2
(2.76)

In scaled units, we can rewrite this frequency as

Ω′B,n =
αnp

[(n− 1)!]2
. (2.77)

The transition frequency obviously becomes small for high-order Bragg processes, as the Rabi

frequency decreases exponentially with the order. Nevertheless, Bragg oscillations of up to sixth

[Giltner95] and eighth [Koolen00] order have been observed experimentally for an atomic beam

crossing an optical standing wave.
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2.7.2 Band Structure

As with any periodic potential, the eigenenergies for the atom in an optical lattice are grouped in

bands, which are continuous intervals of allowed energies, separated by “band gaps” of forbidden

energies. As this structure is relevant to some of the experiments performed in this dissertation,
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Figure 2.2: Plot of the allowed energy bands as a function of V0/8�ωr (or equivalently αp).
The energies are also normalized to the natural unit scale 8�ωr, and are plotted relative to the
potential minima. The shaded regions represent allowed energies, the solid lines represent the

“edges” of the allowed bands, and the dashed line represents the energy of the peaks of the

lattice.
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we will treat this subject briefly. From Floquet’s theorem (or equivalently, Bloch’s theorem),

the spatial periodicity of the time-independent Schrödinger equation for an atom in an optical

lattice, (
p2

2
+ αp cosx

)
ψ = Eψ , (2.78)

implies that the solutions will be plane waves modulated by a periodic function,

ψq = eiqxuq(x), (2.79)

where uq(x+2π) = uq(x), and q is the “Floquet exponent” or “quasimomentum,” which param-

eterizes the family of solutions. The eigenenergies and eigenfunctions can be computed using

standard matrix-diagonalization methods to find solutions of the Mathieu equation [Leeb79;

Shirts93a; Shirts93b]; the numerically calculated energy bands are plotted in Fig. 2.2 as a func-

tion of αp. By convention, the quasimomentum is restricted to the range [−1/2, 1/2), and the

integer part n of the full quasimomentum is called the “band index.” Note that solutions with
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Figure 2.3: Plot of the lowest three energy bands for αp = V0/8�ωr = 0.2, where the band
energy is plotted as a function of the quasimomentum q. This band structure is in the weakly
coupled regime, where the lowest bands have significant curvature. The dashed line at the

scaled energy of 0.4 marks the maximum potential energy of the lattice. The band gaps are a

result of Bragg diffraction, which couples states with integer or half-integer quasimomentum and

induces avoided crossings at these quasimomenta.
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the same reduced quasimomentum q are similar in that they can be written in terms of plane-

wave solutions with the same reduced quasimomentum:

ψn,q =
∞∑

k=−∞
cn,ke

i(k+q)x . (2.80)

The energy bands are plotted as a function of the reduced quasimomentum for a small value of

αp in Fig. 2.3.

The band structure for small well depths can be understood in terms of Bragg scattering.

In the free-particle case, the energy structure is that of a free particle, so that the energy is simply

q2/2, where we identify the quasimomentum with the real particle momentum. Bragg processes

then couple certain degenerate pairs of the quasimomenta (the half-integer values), which are

precisely the locations where the band gaps form. These band gaps can be viewed as avoided

crossings of the energy as the quasimomentum varies. The avoided-crossing nature of the band

gap is clear from the gaps plotted in Fig. 2.3, and the locations of the band gaps on the left edge

of Fig. 2.2 are spaced according to n2, as expected in the free-particle limit. As the bands make

the transition to the deep-well limit (as in the right side of Fig. 2.2), they become narrow, as

expected for trapped states. The band gaps becomes more uniform in size as well, as is expected

for harmonic-oscillator states, which the lattice wave functions approach in the deep-well limit,

when they only “see” the parabolic bottoms of the wells.

For our purposes there are two properties of the lattice wave functions that will be

important. First, as long as the sinusoidal potential is the sole interaction potential for the

atoms, the reduced quasimomentum is a constant of the motion, even if the lattice is temporally

modulated. This property is simply a manifestation of the ladder structure that we already

mentioned. The second property is that for slow changes of αp, the band index is an adiabatic

constant of the motion. This property is important in preparation of atomic states, because if

the atoms can be cooled so that their momenta are within (−�kL, �kL) in free space, they will

be loaded into the lowest energy band when the lattice is turned on adiabatically.
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2.7.3 Boundary Conditions

Finally, we make a short comment on the nature of a “rotor” vs. a “particle,” and the relevance

of these ideas to optical-lattice experiments. A pendulum in the usual sense has an angle as a

coordinate, and the coordinate space is equivalent to a 1-torus. In an extended realization of the

pendulum, as in the optical lattice, the coordinate space is extended and formally equivalent

to a line. The identification of the two situations comes from the periodicity of the potential

in the extended case. Classically, there is no problem making this identification, since one can

always take the extended coordinate modulo the period of the potential. Quantummechanically,

however, the boundary conditions in the two cases can lead to drastically different energy-level

structures. Specifically, the periodic boundary condition in the case of the rotor implies that the

spectrum is discrete, because only the integer quasimomentum states exist. In other words, the

periodic boundary conditions pick out an obviously special class of states (the q = 0 “symmetric

ladder,” where each state is coupled to its degenerate partner via Bragg scattering) out of the

possible continuum of ladders in the extended (particle) case. This difference has various con-

sequences for atom-optics experiments, one of the most dramatic being that in Bragg scattering

and chaos-assisted tunneling experiments, the transport only occurs for a relatively small set of

states, which would naturally be selected in the case of a true rotor. In the case of dynamical

localization as in Chapter 4, the localization still occurs in the particle case, although much of the

theoretical analysis in the literature is for the rotor, which is obviously much simpler. Thus, de-

spite this distinction, we will use the term “kicked rotor” to refer as well to the kicked particle.
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3.1 Overview

Now we turn our attention to the experimental apparatus. In this chapter, we will confine our

discussion to the basic parts of the apparatus that were necessary to carry out the experiments

in Chapter 4. For the later experiments on chaos-assisted tunneling (Chapter 6), several major

improvements were made to the apparatus, and these changes are discussed in Chapter 5.

The apparatus that we discuss here includes several parts. We begin by discussing

the various laser systems involved in the experiment. Two diode lasers provided the light that

trapped, cooled, and performed the measurements on the cesium atoms, and they are discussed

separately in Sections 3.2 and 3.3. We will not discuss the general operation of a magneto-optic

trap (MOT), as these traps have become quite commonplace (a nice discussion can be found

in [Wieman95]); rather, we will give the specifics of our implementation and discuss how they

impact the analysis of the experimental results. The optical lattice, which was the heart of

the experiment, was provided by a home-built Ti:sapphire laser system, which is described in

Section 3.4. For these experiments to work, the atoms had to be extremely well isolated from

their surroundings, so they were trapped in an ultrahigh-vacuum system, detailed in 3.5. Finally,

we discuss the experimental measurement procedure in Section 3.7 and the electronics needed

to control the experiment in Section 3.8.

We will concentrate mostly on the salient features of the experiment, since much of

the information in this chapter has already been covered in the dissertation of Bruce Klappauf

[Klappauf98c].

3.2 DBR Laser

The basic operation of laser cooling in a MOT requires stabilized laser light tuned slightly to

the red of an atomic transition. In the experiments here, we used the light from a distributed

Bragg reflector (DBR) laser diode (model SDL-5712-H1, manufactured by SDL, Inc., which is

no longer available as of the time of writing), which drove the F = 4 −→ F ′ = 5 hyperfine

component of the cesium D2 transition. The advantage of a DBR laser is that it incorporated
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a frequency-selective element that narrows its line width and causes it to lase near the desired

wavelength (852 nm, in our case). The frequency of the laser is coarsely tuned by changing

the diode temperature, and fine-tuning is achieved by adjusting the injection current. This

particular laser nominally produced 100 mW of power with 180 mA of current, and incorporated

a thermoelectric cooler and thermistor within the TO-3 package for convenient temperature

stabilization.

3.2.1 Construction and Operation

The current and temperature controllers for the DBR laser were nuclear instrument module

(NIM) style units that were designed and produced by Leo Hollberg’s group at NIST-Boulder.

These units worked extremely well, providing quiet current sources with reliable protection

for the laser from electrical transients. The diode laser was also protected from electrical tran-

sients with several “protection diodes” in the cable connected to the laser diode, as suggested

by [MacAdam92]. The protection-diode circuit, placed only a few inches from the laser diode,

comprised a fast 1N5711 diode connected across the laser diode, but in the opposite direction,

to protect against reverse voltages; and four 1N914 diodes in series connected across and in the

same direction as the laser diode, to protect against overvoltages. The DBR diode was mounted

on a commercial, air-cooled heatsink mount (model SDL-800 heatsink, with a model SDL-800-H

adaptor plate, both by SDL, Inc.). This mount was bolted to a stainless steel post, which was in

turn clamped to the optical table. The laser light was collimated by an antireflection-coated lens,

Rodenstock model 1403-.108-.020, which had a focal length of 5 mm and a numerical aperture

of 0.5. The lens was originally mounted on a three-dimensional translation stage, for precise and

flexible positioning. However, thermal creep in this setup necessitated a nearly daily adjustment

of this lens to keep the beam line correctly aligned. To solve this problem, we implemented a

method used in the ultracold atom group at the Laboratoire Kastler Brossel in Paris, illustrated

in Fig. 3.1 (a photograph of the DBR laser assembly is also shown in Fig. 3.2). The lens, which

came mounted in a cylindrical aluminum case, was bonded to the end of a rod using a small

drop of five-minute epoxy. The rod was in turn attached to a rotation stage and then an x-y-z

translation stage for precise positioning. The lens was then adjusted into the desired position
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over a V-grooved block that was attached directly to the laser diode heatsink mount. Two glass

rods were then dropped gently onto the lens and V-groove, effectively filling in the space be-

tween them. This assembly was then bonded together by running beads of 24-hour epoxy using

a syringe along the contact lines of the glass rods. After the epoxy was set, the bond for the posi-

tioning setup was broken. The setup (after the collimating lens) required minor adjustments for

a few weeks as the bonds settled, but later the beam line became very stable, often remaining

aligned for months without adjustment.

After collimation, the light was reshaped by an anamorphic prism pair (by Melles Griot)

to be nearly circular, although the astigmatism of the beam required a cylindrical-lens telescope

later in the beam line to maintain circularity. The beam then passed through two optical isolators

(Conoptics, Inc. model 713), for 77 dB measured total isolation, because the DBR laser was

especially sensitive to back reflections (compared to the grating-stabilized laser). This isolation

came at a cost of 20% of the optical intensity. Another 10% of the light was split off for the

saturated absorption setup used to frequency-lock the laser, as described below, leaving about

73 mW of power in the main beam. The beam was then double-passed through a tunable 60-

100MHz acousto-optic modulator (AOM), an IntraAction Corp. model ATD-801AL2. Since the

laser was locked 195 MHz to the red of the F = 4 −→ F ′ = 5 “cycling” transition, the light

after the double-pass setup could be tuned from −75 MHz to +5 MHz relative to the cycling

transition. We used a detuning of −15MHz for normal (loading) trap operation. This AOM also

controlled the intensity of the trapping light. The beam was focused through a 25 µm pinhole

to clean its spatial profile, leaving about 27 mW of power. The diverging beam after the pinhole

was collimated, with a beam waist parameter w0 = 11 mm, to ensure a uniform illumination of

the atoms. This light was split with two 2” diameter beamsplitters (66% and 50%) into three

beams of equal power. Each of these beams passed through a 1.5” diameter quarter-wave plate

before entering the vacuum chamber that contained the MOT, to give the beams the appropriate

circular polarization for proper MOT operation. The beams were retroreflected through another

set of quarter-wave plates after they exited the chamber. This setup provided the usual six-

beam σ+ − σ− molasses configuration, and together with the anti-Helmholtz magnetic field
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coils (described below), provided the usual six-beam MOT configuration. A diagram of this

beam line, along with the other two laser setups, is shown in Fig. 3.3.

3.2.2 Saturated Absorption Spectroscopy

The 10% of the beam that was picked off before the AOM was used to perform saturated absorp-

tion spectroscopy [Pappas80; MacAdam92] on the light for frequency stabilization. The thermal

motions of cesium atoms in a vapor cell smear out the optical resonances, and the resulting

Doppler line width [Verdeyen95] of cesium at room temperature is around 0.4 GHz. This width

is much larger than the 5 MHz natural width of the cesium hyperfine resonances, and is even

larger than the splittings between the excited hyperfine levels, so that these states cannot be

resolved by simple absorption spectroscopy. The idea behind saturated absorption spectroscopy

is that the atoms are illuminated by two counterpropagating beams of the same frequency (a

“pump” and a “probe”), where the intensity of one of the beams (the probe) is monitored. The

Doppler-broadened line will be apparent as usual, but at the resonance frequencies, the two

beams will pick out the zero-velocity atoms, because only these atoms will be simultaneously

Top View

¯0.16" glass rod

Collimation lens

DBR laser diode

Front View

Figure 3.1: Diagram of DBR laser diode and collimation lens hardware. Only the front plate

of the mounting heatsink is shown. A custom aluminum block with a V-groove was bolted to

the front of the mounting plate. The collimation lens, which was mounted in a cylindrical alu-

minum housing, was held in place above the groove by two glass rods. The collimation lens, glass

rods, and V-groove block were bonded together with 24-hour epoxy, resulting in a very stable

configuration.
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pumped by both beams (for moving atoms, the two beams will be Doppler-shifted to two differ-

ent frequencies). The spectral manifestation of this effect is that there are narrow “Lamb dips”

in the Doppler-broadened background, because these atoms are more saturated at certain fre-

quencies and thus are more transparent to the probe beam. The Lamb dips occur at the atomic

hyperfine resonances and also at “crossover resonances,” which occur halfway between pairs of

hyperfine resonances (in these cases, the two beams pick out atoms moving such that the two

Doppler-shifted beams excite two different hyperfine transitions, and thus still oversaturate the

atoms). The widths of the Lamb dips are affected by many factors, including beam alignment,

beam intensity, and cell pressure, but the width of the dips can be made comparable to the

natural line width.

The saturated absorption spectrum thus provided high-resolution, frequency-depend-

ent spectral features by which the DBR laser frequency could be determined. In the sense of

Figure 3.2: Photograph of the DBR laser, showing the laser itself inside the gold-toned TO-3

package, the mounting heatsink, and the collimation lens assembly.
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actively stabilizing the frequency of the laser, though, these dips are not so convenient, because

it is necessary to lock to a sloping part of a spectral feature. It is possible to lock to the side of a

Lamb dip, but then the laser frequency would be sensitive to the width of the dip, which could

drift in time. A more convenient situation arises for a dispersive (as opposed to absorptive) line

shape, where the maximum slope occurs at the center of the resonance. One way to obtain such a

shape is through frequency-modulation (FM) spectroscopy [Bjorklund83]. In this technique the

frequency of the laser light is modulated, and phase-sensitive detection produces the dispersive

line shape. In our setup, the probe beam was modulated at 11 MHz using a Conoptics model

350-40 electro-optic phase modulator (EOM) before passing through a 75mm long cesium vapor

cell (made by Environmental Optical Sensors, Inc.), where it overlapped the counterpropagating

pump beam. The probe was monitored with a New Focus model 1801 low-noise photodiode, and

the photodiode signal was mixed with the phase-shifted signal that drove the EOM. Additionally,

Interaction Beam
(Optical Lattice)

Monitor
Cavity

Pump Laser
(Argon Ion)

llll/4

DBR
Diode Laser

Grating-Stabilized
Diode Laser

Saturated Absorption Lock

Saturated Absorption Lock

AOM

AOM

Optical
Isolator

MOT Beams

(to interaction
chamber)

T=66%

T=50%

MOT Beams

Wavemeter

Vacuum
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Ti:sapphire
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AOM

CCD
Camera

Spatial Filter

Figure 3.3: Layout of optical table, showing the schematic beam paths of the DBR diode laser

(which provided the MOT trapping light), the external cavity diode laser (which provided the

repumping light for the MOT), and the Ti:sapphire laser (which produced the optical lattice for

the time-dependent interaction).
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the pump beam was double-passed through a 70MHz AOM, which was chopped on and off at

50 kHz. The mixed-down photodiode signal was then processed by a Stanford SR510 lock-in

amplifier, with this chopping signal as the reference. The consequences (beyond the usual noise

immunity of lock-in detection) of this pump-beammodulation were twofold: first, the spectrum

was shifted to the red by 70MHz, because the pump and probe beams were 140MHz apart, and

second, the Doppler contribution to the spectrum was suppressed, because only the Lamb dips

(and not the Doppler-broadened absorption shape) were affected by the presence or absence of

the pump beam. A spatial filter with a 75 µm pinhole placed in the input beam of this setup

greatly enhanced the quality and reproducibility of the spectrum by reducing fringes on the

DBR laser beam, which had a relatively poor spatial mode quality. The measured spectrum for

our setup is shown in Fig. 3.4. Because of the tunability requirements of the MOT trapping

light, and the fact that the F = 4 −→ F ′ = 4, 5 crossover transition was the largest and

cleanest feature in the spectrum, we locked the DBR laser to this crossover and shifted the
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F ' = 3, 5

F ' = 4F ' = 3, 4
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Figure 3.4: Saturated-absorption spectrum for the cesium D2 line F = 4 −→ F ′ hyperfine
manifold, as measured by the DBR laser setup described in the text. The three excited-state

hyperfine levels coupled to the F = 4 ground state are visible along with the three crossover
transitions (labeled by pairs of quantum numbers) as dispersive resonances. The DBR laser was

actively locked to the F ′ = 4, 5 crossover resonance during normal MOT operation.
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laser frequency closer to the MOT cycling transition (before the beam entered the chamber) as

described above. The laser was locked to the crossover resonance using a standard P-I feedback

loop to the laser injection current. This detection and locking method was considerably more

complex than the method implemented for the repumping laser diode, but the advantage of this

setup was that the main beam that went to the chamber was not frequency-modulated. After

active locking, the line width of the DBR laser was on the order of 1 MHz, which is not nearly

as narrow as is possible with other (e.g., grating feedback) stabilization techniques. It may have

been possible to improve this line width electronically by using a much faster feedback loop, but

this setup was certainly sufficient for the cooling and trapping of atoms. More details, as well as

schematic diagrams, of this saturated absorption setup can be found in [Klappauf98c].

3.3 Grating-Stabilized Diode Laser

Although the F = 4 −→ F ′ = 5 trapping transition is in principle a closed cycling transition

(because the F ′ = 5 state decays only to F = 4), the trapping light can off-resonantly excite

one of the other excited hyperfine levels, which could then decay to the F = 3 “dark state,” in

which case the trapping laser would no longer cool the atom. The DBR laser alone was therefore

insufficient on its own to trap cesium atoms. To address this problem, a “repumping” laser, tuned

to the F = 3 −→ F ′ = 4 transition, was used to return atoms in the dark state to the cycling

transition. For this repumping light, we employed a home-built, grating-stabilized (pseudo-

external cavity) diode laser system [Wieman91; MacAdam92]. This laser system was constructed

in the Littrow configuration, where a grating was placed in front of the laser such that the first-

order diffracted beam was reflected back into the diode, while the zeroth-order light was taken as

the laser output. The grating thus served as a wavelength-selective component, which narrowed

and controlled the lasing frequency.

3.3.1 Construction and Operation

A diagram of the Littrow laser is shown in Fig. 3.5, and a photograph of the assembled laser is

shown in Fig. 3.6. The diode laser was a model 5421-G1 laser by SDL, Inc., which is housed in a
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standard 9 mmpackage, and nominally produced 150mWwith 200mA of injection current. The

diode was mounted in a Thorlabs model LT230P-B collimation tube, which included a collimat-

ing lens with focal length 4.5 mm and numerical aperture 0.55. The collimation-tube assembly

was mounted in a structure made of 954 aluminum bronze, which also supported the diffrac-

tion grating. This material had high strength and resistance to fatigue, which was important

because the adjustability of the system relied on the flexing of thin sections of the structure,

and the material also had reasonably good thermal conductivity, which facilitated temperature

stabilization.

The diffraction grating was a 1/2”×1/2” section of an inexpensive Edmund Scientific

E43,005 grating, which was 3/8” thick and blazed for 500 nm (17◦). We had a 500 Å gold coating

(over a 60 Å chromium coating to facilitate adhesion) evaporated onto the stock aluminum coat-

ing to improve the reflection efficiency. At the Littrow angle (31◦), the coated grating diffracted

21% of the input power into the first (retroreflected) order and 67% into the zeroth-order beam.

The grating angle was set by two New Focus 9300-series fine-adjustment screws, whose ball-

ends contacted sapphire windows for precise and stable alignment. Additionally, the horizontal

grating angle was controlled by a piezo stack, which provided electronic tuning capability. The

piezo stack was assembled from three American Piezo Ceramics piezo discs, which were 8 mm

in diameter and 2.54 mm thick. The stack had a maximum voltage of 1500 V, a capacitance of

39 pF, and a displacement of 1.35 µm at 1 kV (the laser tuning rate was 12 GHz/µm of displace-

ment), and the stack was driven by a Trek model 601B-4 high-voltage (1 kV) amplifier, which

had the upsetting habit of periodically self-destructing. Although we designed the pivot point of

the horizontal adjustment to be near the optimal location [McNicholl85], the laser could only be

scanned for 1 GHz frequency intervals without mode hops. This restricted tunability was likely

due to a competition between the pseudo-external cavity modes and the free-running laser diode

modes. Some possible solutions would include using an antireflection-coated diode or scanning

the injection current along with the grating angle to match the corresponding modes. However,

this setup was certainly sufficient to scan continuously over the F = 3 −→ F ′ = 4 excited-state

manifold, and has operated for years without mechanical intervention.
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Top View

Side View
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Thermoelectric cooler

Output Window

Lucite Cover
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Collimating Lens
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Figure 3.5: Diagram of the grating-stabilized diode laser for driving the repumping transition for

the MOT. The top view shows the main elements involved in the operation and tuning of the

laser, while the bottom view shows how the laser assembly is mounted and thermally stabilized.
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We used a second set of NIST current and temperature modules (as with theDBR laser)

to control the laser, with the same protection diodes as in the DBR laser. The temperature of

the aluminum bronze structure was monitored with a Fenwal Electronics 50 kΩ glass-bead ther-

mistor, and a separate Analog Devices AD590 temperature sensor provided the panel reading on

the NIST temperature controller. The bronze structure was attached to an aluminum base plate

with nylon screws, and a Melcor CP1.0-127-05L thermoelectric cooler was sandwiched between

them to provide active temperature control over the bronze structure. Because the diode laser

was operated near room temperature, the aluminum plate was an adequate thermal reservoir.

A Lucite cover provided thermal and also some acoustical isolation from the surroundings, and

a microscope slide at Brewster’s angle allowed the light to escape from the housing. The base

plate was mounted rigidly to the optical table with four 1” diameter stainless steel posts, so

that mechanical resonances would occur only at high frequencies. A second aluminum plate was

Figure 3.6: Photograph of the grating-stabilized laser assembly, used for the MOT repumping

light.
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bolted directly to the bottom of the base plate with a layer of 1/8” thick Sorbothane viscoelastic

damping material between the two, in order to damp any vibrations of the base plate.

As in the case of the DBR laser, the Littrow laser output beam was passed through an

anamorphic prism pair to make the beam circular before it passed through a single Conoptics

isolator. The beam then made a single pass through a 100.5 MHz AOM, which shifted the

frequency to the blue (because the laser was again locked to a crossover transition rather than the

desired line itself) and provided intensity control for the repumping light. The beam was then

spatially filtered and expanded to nearly the same size as the MOT beams, and was combined

with only the vertical MOT beam (i.e., the beam along the symmetry axis of the anti-Helmholtz

coils, described below) by a 1.5” polarizing cube beamsplitter before passing through the large

quarter-wave plate mentioned above. With a typical operating current of 93 mA, this setup

provided about 40mW of power after the grating, and about 16 mW of repumping light after the

spatial filter, which was far above the necessary intensity for proper MOT operation.

3.3.2 Frequency Control

The frequency of this laser was also locked via a saturated-absorption setup, which was consid-

erably simplified compared to the setup for the DBR laser. The optical setup we used here is

essentially the same as the one described in [MacAdam92; Monroe92]. About 10% of the re-

pumping beam was split off of the main beam before the AOM, which then passed through a

3/8” thick uncoated window. The reflections from the window provided a pair of probe beams

with about 1% of the main-beam intensity, and passed through a cesium vapor cell (identical to

the vapor cell used in the DBR setup). The remainder of the picked-off beam formed the pump

beam, overlapping one of the probe beams in the vapor cell in a counterpropagating fashion.

The intensities of the probes were detected and subtracted by a differential photodetector. The

Lamb dips only appeared on the probe beam that overlapped the pump beam, while the Doppler

absorption profile appeared as a common mode signal on the two beams, and was thus removed

by the subtraction. Again, from the standpoint of active frequency locking, it was convenient to

have a dispersive signal. To achieve this, we dithered the laser frequency by applying a small 12
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kHz signal to the piezo stack, and the subtracted photodiode signal was analyzed by an EG&G

model 5204 lock-in amplifier. The dither had the disadvantage that the main repump beam was

modulated, but the frequency excursion was not more than a few MHz, and the MOT operation

was relatively insensitive to the repump characteristics, because the atoms spent a relatively

small fraction of their time out of the cycling transition. The measured saturated-absorption

spectrum for this setup is shown in Figs. 3.7 and 3.8 (see also [Klappauf98c] for other details

of this setup, including a diagram of the optics and electronics). This signal was then fed back

to the piezo control amplifier, using another P-I lock circuit based on the design in [Monroe92].

The laser was locked to the F = 3 −→ F ′ = 3, 4 crossover transition, which was the strongest

feature in the spectrum, and the AOM shift of the main beam brought the repump light to the

center of the F = 3 −→ F ′ = 4 repumping transition resonance. With this fairly simple setup,

the diode laser remained locked to the proper frequency for hours, provided the optical table

was not bumped too severely, and only required occasional adjustment of the injection current

to move the laser mode-hop points away from the hyperfine resonances.
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Figure 3.7: Saturated absorption spectrum for the cesium D2 line F = 3 −→ F ′ hyperfine
manifold, as measured by the grating-stabilized (repumping) laser setup described in the text.

The signal plotted here is the output of the differential photodiode, so the resonances appear

as absorptive line shapes. The spectrum after additional processing by the lock-in amplifier to

extract the dither information is shown in Fig. 3.8.
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3.4 Ti:sapphire Laser

The two diode lasers worked quite well for cooling and trapping atoms, but to realize a clean

optical lattice, we required a high-intensity, far-detuned source of light. These requirements

were met by a home-built Ti:sapphire laser. This laser, when pumped by a Coherent Innova 90

argon-ion laser (producing about 8 W of power in multi-line mode) produced 0.5 W of single-

mode light, tunable several nm around 852 nm. This laser (along with the associated control

electronics) was originally a dye laser, built by Patrick Morrow, and was similar to a dye laser

used in the sodium-based apparatus in our laboratory [Fischer93; Robinson95a]. The dye laser

and the subsequent conversion to a Ti:sapphire laser were based on designs by Jim Bergquist at

NIST-Boulder.
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Figure 3.8: Saturated absorption spectrum for the cesium D2 line F = 3 −→ F ′ hyperfine man-
ifold, as measured by the grating-stabilized (repumping) laser setup described in the text. The

signal plotted here is the output of the lock-in amplifier, which extracts the frequency-dither

information from the signal, so that the resonances are dispersive. This spectrum is otherwise

the same as that shown in Fig. 3.7. During normal operation, the repump laser is actively locked

to the F = 3 −→ F ′ = 3, 4 crossover resonance.
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3.4.1 Laser Design and Construction

The basic layout of the Ti:sapphire laser is shown in Fig. 3.9, and a photograph of the laser

is shown in Fig. 3.10. The overall construction of the laser was a series of 1” thick aluminum

plates mounted on four long 1” diameter Invar rods, providing a stable frame for mounting the

laser components. The mirrors were mounted on plates that were in turn mounted on the main

plates by extension springs and Bill Lees fine-adjustment screws.

The crystal itself was produced by Union Carbide. The crystal was doped with 0.05%

titanium, with a guaranteed figure of merit ≥ 450, and was 6 mm in diameter and 20 mm long,

with Brewster-cut ends. The crystal was mounted in a split copper disk, which was in turn

water-cooled. We found that the water cooling was necessary for efficient laser operation.

The cavity was a four-mirror, folded-ring design. The two mirrors on either side of

the crystal (in the beam path) were the “pump mirrors,” which allowed the argon-ion light in

and out of the cavity. These mirrors were coated by VLOC (now a part of II-VI, Inc.), and

were specified to transmit at least 90% at 488 and 514 nm, while maintaining at least 99.9%

reflectivity at 852 nm. These two mirrors also had a 20 cm radius of curvature, while the other

two mirrors were flat. The arrangement of the mirrors and crystal was such that the aberrations

introduced by the Brewster surfaces and the off-axis curved mirrors cancelled [Dunn77], leading

to clean Gaussian intensity profiles both inside the crystal and at the output coupler. The output

coupler had a reflection coefficient of 97.3% (several other output couplers in the 90-95% range

failed to give better output powers). The fourth mirror was small and mounted on a piezo

stack to give rapid control over the cavity length. The cavity mode was focused to its tightest

point inside the crystal (to a waist w0 on the order of 40 µm), and the beam at the output

coupler had a waist around 0.7 mm. The argon-ion beam was focused by a lens (175 mm focal

length) to match the cavity mode inside the crystal, and the lens was tilted to compensate for the

aberrations introduced by the Brewster-cut crystal end and the propagation through the slightly

curved mirror (the axis of the tilt was perpendicular to the plane of the cavity mode).

The cavity also included several optical devices for stable, single-mode operation, some

of which are visible in Fig. 3.11. An optical diode (optical rotator/Faraday rotator pair, manufac-
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tured by Coherent Laser Group for their model 899 Ti:sapphire laser) forced unidirectional las-

ing by rotating the polarization of light propagating in the wrong direction. A birefringent filter,

also manufactured by Coherent, provided coarse frequency tuning, making use of the frequency-

dependent polarization shift of three birefringent plates. Single-mode operation was enforced

by a Coherent intracavity assembly (ICA), which housed two etalons, a thick etalon and a thin

etalon. The thick etalon, which had a free spectral range (FSR) of 10 GHz, was dithered and

actively locked to maximize the laser power. The thin etalon, with a 225 GHz FSR, was used to

select the longitudinal cavity mode of operation, in roughly 10 GHz steps. The laser frequency

could be tuned continuously by a pair of Brewster plates, mounted on galvanometer drives, to

vary the cavity length; the two windows were arranged to cancel deflections caused by their syn-

chronous rotation. The short-term line width of the laser was around 10MHz, as measured by a

Fabry-Perot cavity with a similar resolution, with fluctuations at the 100MHz level during a data

run.

3.4.2 Laser Operation and Control

The laser could be actively locked to arbitrary frequencies by using a polarization-based spectro-

scopic technique [Hänsch80] to derive a dispersive lock signal from a 1.5 GHz FSR stable Invar

Fabry-Perot cavity. The cavity resonance could be tuned continuously by adjusting the angle of

a Brewster plate inside the cavity. In practice, though, the Ti:sapphire laser was stable enough

that active frequency locking was unnecessary.

The frequency of the laser was monitored on a NIST LM-10 wavemeter (scanning

Michelson interferometer), which measured the absolute laser wavelength by direct comparison

to a known, stabilized HeNe reference laser. The resolution of the wavemeter was limited to

about 500MHz, so the Ti:sapphire beam wasmeasured simultaneously with the DBR laser beam

by a scanning “monitor” Fabry-Perot cavity with a 1.5GHzFSR. The Ti:sapphire laser was tuned

so that the resonances of the two lasers were aligned, and thus the frequency could be known to

much better than 1.5 GHz. The Ti:sapphire beam intensity was controlled by an 80 MHz fast

AOM (IntraAction model ATM-801A2-2), which shifted the frequency 80 MHz to the blue.



84 Chapter 3. Experimental Apparatus I

F
ig
u
re
3
.9
:
D
iag
ram

o
f
th
e
T
i:sap

p
h
ire

lase
r
layo

u
t
an
d
b
e
am

p
ath

s.
T
h
e
stru

ctu
re
o
f
th
e
lase

r
co
n
siste

d
o
f
th
ick

alu
m
in
u
m
p
late

s

m
o
u
n
te
d
o
n
fo
u
r
lo
n
g
In
var

ro
d
s.
O
n
ly
th
e
m
o
st
b
asic

o
p
tical

e
le
m
e
n
ts
are

sh
o
w
n
,
in
clu

d
in
g
th
e
fo
u
r
m
irro

rs
(sh

o
w
n
in
b
lu
e
)
an
d

th
e
T
i:sap

p
h
ire

crystal
(sh

o
w
n
in
p
in
k
),
w
h
e
re
th
e
b
e
am

p
ath

“jo
g
s”
in
th
e
rig
h
t
h
alf

o
f
th
e
d
iag
ram

.
T
h
e
tw
o
m
irro

rs
ad
jace

n
t

to
th
e
crystal

(in
th
e
se
n
se
o
f
th
e
b
e
am

p
ath

)
tran

sm
itte

d
th
e
arg

o
n
-io
n
lase

r
p
u
m
p
lig
h
t,
w
h
ich

e
n
te
rs
in
th
e
d
iag
ram

fro
m
th
e

u
p
p
e
r
rig
h
t.
T
h
e
o
u
tp
u
t
co
u
p
le
r
is
th
e
le
ftm

o
st
m
irro

r.
T
h
e
jo
g
in
th
e
u
p
p
e
rm
o
st
le
g
o
f
th
e
b
e
am

p
ath

re
p
re
se
n
ts
th
e
lo
catio

n
o
f

th
e
o
p
tical

d
io
d
e
,
w
h
ich

fo
rce

d
th
e
lasin

g
m
o
d
e
to
o
scillate

in
o
n
ly
o
n
e
d
ire
ctio

n
,
in
d
icate

d
b
y
th
e
arro

w
s.
F
o
r
a
se
n
se
o
f
scale

,
th
e

u
p
p
e
rm
o
st
le
g
o
f
th
e
b
e
am

p
ath

is
ab
o
u
t
64

cm
lo
n
g
.



3.4 Ti:sapphire Laser 85

Since the DBR laser beam (before the AOM) was 195MHz to the red of the F = 4 −→ F ′ = 5

transition, and it was the zeroth-order beam of the Ti:sapphire AOM that was measured by the

cavity, the frequency of the optical lattice seen by the cesium atoms was n×1.5 GHz−115MHz

relative to the MOT cycling transition, when the two resonances were overlapped on the monitor

cavity. For the experiments in Chapter 4, we used n = −4, for a detuning of −6.1 GHz.

The first-order AOM beam was spatially filtered by focusing through a 50 µm pinhole.

The beam was then collimated with a waist parameter of 1.5mm and sent to the vacuum cham-

ber. This beam size was significantly larger than the size of the MOT atom cloud (which was

Gaussian, with σx = 0.15 mm), to ensure uniform illumination of the atoms. The beam was

retroreflected to form the optical lattice, using a mirror mounted directly to a vacuum-chamber

window flange. This mounting method made the mirror position very rigid in the direction

Figure 3.10: Overall photograph of the Ti:sapphire laser. The view is from the pump input end

of the laser, and the pump light input periscope is visible here. The argon-ion laser is also visible

behind and to the right of the Ti:sapphire laser.
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of the lattice, which was important because the retroreflector position determined the spatial

phase (and hence the positional stability) of the lattice. We measured the phase stability of

the optical lattice with a Michelson interferometer setup, and found that the phase fluctuations

over the time scales of the experiments (2ms) were 8% of the lattice period, with typical ringing

frequencies of around 600 Hz. This number is a generous upper bound, since the noise in the

measurement was probably dominated by the motion of the beamsplitter and reference mirror.

These optics were mounted on a Newport model 45 damped post and were hence not nearly as

rigidly fixed in the direction of the standing wave. The dominant source of the phase instability

was vibration from the cooling water flowing through the argon-ion laser, which was transmitted

to the chamber and retroreflector through the optical table. The short-term (i.e., over a single 2

ms interaction with the atoms) noise on the intensity of the laser was measured to be 0.2% (rms)

of the average intensity, with longer-term (i.e., on the order of seconds) fluctuations at the same

ICA
Input
lensInput

mirror
Ti:sapphire

crystal

Birefringent
filter

Brewster
tuning plates

Figure 3.11: Overhead view of the interior of the Ti:sapphire laser, showing a clear view of the

input light as it enters the crystal. Several of the frequency-stabilization components are also

visible here.
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level. (Note that the intrinsic noise of the New Focus model 1801 low-noise photodetector used

for this measurement was of the same order as the laser intensity noise, and was thus subtracted

to obtain the reported numbers.) The short-term fluctuations were dominated by an oscillation

at 2.4 kHz, due to the dither of the thick etalon at the same frequency. The laser power also

drifted by several to many percent over the course of hours as the room temperature drifted. For

the experiments in Chapter 4, where the data were acquired over a few days, we manually kept

the power at approximately the same level. For the experiments in Chapter 6, where the data

were acquired in runs that took place continuously over more than a week at a time, a photodiode

after the spatial filter monitored the laser intensity, and the computer scaled the control signals

to compensate for laser drifts at the beginning of each run (i.e., about every 15-30 minutes).

Also, if the power drifted by more than 1% from the initial power during a single data run, the

entire run was discarded. This procedure was important, as the laser intensity was significantly

different from the day to the night because of the difference in ambient temperature.

3.4.3 Intensity Calibration

As the local laser intensity and detuning determined the optical potential experienced by the

atoms, it was important to have an accurate method for calibrating the laser intensity. Here we

will discuss the calibration method used for the experments in Chapter 4. The beam power

was measured using a Newport model 1825C power meter with a model 818-SL semiconductor

detector (and a model 883-SL attenuator). The power meter had a NIST-traceable calibration,

with a nominal absolute uncertainty of 2%. The intensity used for the well-depth calculation

was reduced by 8% from this measured value to account for losses due to the vacuum chamber

windows and other optics in the beam line after the point where the power was measured.

The beam diameter was measured using both a knife-edge method and an imaging

method using a CCD camera. Both methods measured the beam profile approximately 2 m

before the beam entered the chamber. The knife-edge method measured only the beam profile

as the beam propagated to the chamber, while the CCD camera method measured the beam

propagating both to and from the chamber by using beam splitters on kinematic mounts to pick
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off a sample of the beam for the camera. The knife-edge method involved scanning a knife edge

across the beam using a micrometer-driven translation stage. The detector placed behind the

knife edge thus measured the total intensity integrated over a half-plane. As the beam was quite

Gaussian after the spatial filter, the detected signal could be well fit to an error-function model to

yield the beam-waist parameter w0 in the horizontal and vertical directions. In the CCD camera

method, the picked-off beam passed through several attenuators and then into a Sonymodel XC-

77 CCD video camera. The camera output was digitized using a ComputerEyes/RT SCSI frame

grabber by Digital Vision, Inc., and the beam intensity profile was fit directly to a Gaussian model

to obtain the beam-waist parameters. Some interference fringes due to reflections between the

CCD surface and the protective windowwere visible on the beam, but did not significantly affect

the measurement. The CCD images were valuable in ensuring that the beam spots were circular

and nearly the same size before and after the chamber. Because the fitted spot sizes depended

slightly on the beam intensity in the CCD method, this method was used only to obtain the

relative spot sizes of the beam before and after the chamber, and the knife-edge measurement

was used to set the absolute scale of the measurements. The local intensity used for well-depth

calculations was also corrected for the specific widths of the MOT and laser beam size. The

correction factor is

ηMOT =
w2
0

4σ2x +w2
0

, (3.1)

where σx is the spatial standard deviation of the Gaussian MOT profile. This correction rep-

resents the average intensity experienced by the atoms relative to the intensity experienced by

an atom at the center of the beam. For typical values of σx = 0.15 mm and w0 = 1.5 mm, this

correction factor is about 96%. Combining these measurements yielded an absolute potential

amplitude that was correct to better than 10%. The oscillations in the diffusion rate D(K) as a

function of the laser intensity, as described in Chapter 4, provided an independent check of this

calibration.
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3.5 Vacuum System

The ultrahigh vacuum system, shown in Figs. 3.12 and 3.13, had as its main feature a large 10-way

stainless steel cross, custom-fabricated by HPS (a division of MKS Instruments). The cross had

six 4.25” ConFlat (CF) flanges, arranged along the three major axes to accept the large MOT

trapping beams. Along the equatorial plane of the chamber, there were four 2.75” CF flanges

between the four 4.25” flanges. Two of these smaller flanges provided access for the optical

lattice, a third provided access for the main imaging system, and the fourth provided a path to

the vacuum pump and cesium source. The flanges providing optical access were covered with

zero-length (Kovar-sealed) glass viewports, which were antireflection (AR) coated by VLOC to

have≤ 0.25% reflection per surface. The glass cells used in previous experiments [Robinson95a]

have the advantages of compact size and rapid magnetic field switching. The steel chamber

Cesium
ampule

Ion
pump

HH
coils

AH
coils

Figure 3.12: Photograph of the vacuum chamber. The rear section of the chamber is visible here,

including the ion pump and cesium ampule. The main (trapping) chamber section is also visible,

along with the anti-Helmholtz (AH) and Helmholtz (HH) coils.
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used here, on the other hand, has the advantages of AR-coated windows, which largely suppress

interference fringes on the beams, and optical access for large beams, like the MOT trapping and

repumping beams. The chamber was mounted on a 5/8” thick aluminum plate (later changed to

a G10 glass phenolic plate), which was in turn attached to the table via four 6” long stainless steel

posts. All the viewport flanges had additional 1/4-20 tapped holes for mounting optics directly

to the chamber.

A 20 l/s ion pump (Varian model 919-0236) maintained the vacuum in the chamber,

and an HPS model 10000 5836 nude Bayard-Alpert ion gauge provided a means to monitor the

chamber pressure (in addition to the ion pump current). From the ion-pumpcurrent, the vacuum

pressure was around 8 × 10−8, although it is likely that the actual pressure was substantially

lower. With the proper magnetic bias field adjustment, the atoms could be released from the

MOT by turning off the anti-Helmholtz coils (but not the optical molasses), and a substantial

Figure 3.13: Photograph of the main (trapping) section of the vacuum chamber. This view looks

into one of the large MOT trapping beam windows and the smaller optical lattice input window.

The anti-Helmholtz and Helmholtz coils are more visible in this picture.
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fraction could still be recaptured after 4 s by turning on the anti-Helmholtz fields again. With

the measurements in [Monroe92], a lifetime of 4 s implies a pressure of 2× 10−9 torr (assuming

that cesium vapor dominated the background pressure). The readings from the ion gauge and

ion pump were probably anomalously high due to cesium contamination.

We introduced cesium vapor into the chamber from a 1 g sample in a glass ampule, which

was attached via a small CF flange (and a glass-metal seal) to a series pair of all-metal bakeable

UHV 1.5” diameter vacuum valves (Varian model 951-5027). The inner valve was always fully

open, and we installed it so that we could remove the cesium ampule without breaking vacuum

in the main chamber by sealing both valves and breaking the CF seal between them. The second

valve was usually closed hand-tight, and opened by a few turns to increase the cesium pressure

in the main chamber whenever necessary (typically only once per week). At first, though, we

heated the cesium ampule to 100◦C for several days in order to build up enough vapor pressure

to see trapped atoms in the MOT. This procedure coated the surfaces of the main chamber

with cesium until it no longer acted as an effective pump for the cesium vapor. In an earlier

attempt, we used a UHV variable leak valve (Varian model 951-5106) to introduce the cesium,

but this valve did not have sufficient conductance to maintain a reasonable quantity of cesium

in the chamber, even with substantial heating of the ampule. By contrast, the large-valve system

required no temperature control of the cesium ampule.

To achieve good vacuum, we baked the chamber for three days at a maximum tem-

perature of 220◦C, with an additional day each for the gradual ramping up and down of the

temperature. During the bake, the ion pump was off, but the chamber was pumped by a 70 l/s

turbo pump through one of the all-metal bakeable valves. After this main bake, the second valve

and cesium ampule were installed, and this subsection was separately baked for several days at

a similar temperature while being pumped by the turbo pump through a pinch-off tube. After

the second bake, we broke the ampule’s inner glass seal using the included breaker and a strong

magnet. Then the seal to the turbo pump was pinched off and we opened the valve to the main

chamber.
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3.5.1 Magnetic Field Control

The trapping action of a MOT relies on the presence of magnetic-field gradients in the trapping

region. In our experiment these fields were generated by a pair of coils in the anti-Helmholtz

configuration (where the coils form a mirror-image pair on either side of the atoms, but the

currents in the two coils flow in opposite directions). The circular coils were 6.2” in diameter

and each was wound from 202 turns of 24 gauge, Kapton-coated copper magnet wire onto a

water-cooled aluminum form. The layers of the coil windings were fixed in place and further

electrically insulated with clear fingernail polish. After winding, the coils measured 8.7 Ω and 2

mH each. The aluminum forms were attached to the chamber by Lucite clamps that gripped the

two vertical flanges, such that the separation between the coils was about half their diameter.

At a typical operating current of 3 A, the coils yielded a gradient of 11 G/cm along the symmetry

axis of the coils (and thus half this value perpendicular to this axis, which follows from cylindrical

symmetry and∇ ·B = 0). Although the coils generated 80W of heat, they remained cold to the

touch with 10◦C water flowing through the forms at 10 gallons/hour.

The current through these coils was provided by two push-pull pairs of LM12 (National

Semiconductor) high-current operational amplifiers, which were powered by a massive Sorenson

DCR40-35A single-ended power supply. This circuit was capable of switching off the 3 A of

current in the coils in 100 µs, but due to eddy currents in the chamber and the coil forms, the

major part of the magnetic field damped away exponentially with a much longer time constant

of 3 ms. The residual magnetic fields were not of substantial concern for the experiments in

Chapter 4. However, the Raman velocity selection technique described in Chapter 5 is very

sensitive to magnetic fields, and with this setup we could detect changing magnetic fields even

350ms after the coil currents were extinguished. This time scale was much longer than expected

for eddy currents in the chamber or coil forms, and even persisted when the aluminum chamber

mounting plate was replaced with a phenolic plate. Thus, this long field decay was likely due to

the presence of ferromagnetic Kovar in the chamber viewports.

The chamber was also enclosed within three pairs of Helmholtz coils, which allowed

the magnetic field at the center of the chamber to be nulled out. Two of these coil pairs also
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provided the bias field for the optical pumping described in Chapter 5. These coils had a square

profile, measured about 15” per side, and were separated by about 8” (with slight variations

among the pairs so that they fit together properly and so that the coil spacings were 0.54 times

the coil widths [Moore91]). Each of these coils had 44 turns of the same wire used for the

anti-Helmholtz coils, with about 6 Ω of resistance per coil. These coil pairs produced about 2

G/A of magnetic field along their respective axes. For typical operating conditions, where around

0.8 G was needed in the vertical direction to compensate for the magnetic field of the Earth,

and a combined 1.5 G was pulsed on in the horizontal direction (using two coil pairs) for optical

pumping, no special cooling was needed for these coils. These coils were driven by circuits that

were similar to the anti-Helmholtz drivers, but were based on the Burr-Brown OPA2544T dual

high-current op-amp, with the two sections operating in push-pull mode on a series pair of coils.

The push-pull arrangement permitted bidirectional operation of all the coils, even though all the

drivers (including the anti-Helmholtz drivers) were driven from a common single-ended power

supply.

3.6 Imaging System

All measurements of the atoms in our experiments were performed by a CCD camera (Princeton

Instruments TE/CCD-5122TK/1UV). The CCD chip was an array of 512×512 pixels, with each

pixel approximately a 20 µm square. For low-noise operation, the CCD was chilled to around

−30◦C. The light was imaged by a Nikon 105 mm f/2.8 D macro lens, which reduced the image

in the plane of the atoms by 1:1.8. The camera viewed the atoms through one of the smaller

viewports in the chamber, such that the camera view was orthogonal to the optical lattice.

The action of the camera shutter was quite audible, and we designed the camera mount

to minimize the transmission of vibration to the lasers and other components on the optical table.

The camera was attached via a short post to an aluminum plate, which was sandwiched between

two sheets of 1/8” thick Sorbothane rubber. This stack was clamped between an aluminum base

plate and a third aluminum plate, so that the camera was vibrationally isolated from the base.

The base plate was then mounted on a Newport model 45 vibration-damping post. The post was
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mounted on a large aluminum base plate that rested on the table through another intermediate

layer of Sorbothane, and was clamped down with clamps padded with more rubber. With this

setup, the shutter action vibrations were visible on the laser lock signals, but did not have a

significant effect on the measurements.

The camera images were transferred to the Power Macintosh 7100 controlling computer

via a Princeton ST-138 camera controller connected to a NuBus-style computer interface card.

The data transfer took several seconds for large images, so for real-time alignment we used a

separate and much less expensive Ikegami camera connected to a small CRT monitor. This

camera viewed the MOT through the side edge of one of the MOT beam windows, so it also

provided an independent view of the MOT.

3.7 Measurement Technique

With these experimental tools in hand, we can proceed with a discussion of the measurement

methods for the data presented in the next chapter. The basic experimental sequence for these

experiments is shown in Fig. 3.14. The sequence began by preparing a sample of cesium atoms

by loading the MOT from ambient vapor. This trapping phase lasted for about 5 s. The atoms

were cooled further by reducing the intensity of the trapping light to about 40% of its maximum

value and increasing the detuning to 55MHz (from the 15MHz used during the initial trapping

phase). This procedure resulted in an atomic sample that was approximately Gaussian in position

and momentum, with typical sizes of σx = 0.15 mm and σp/2�kL = 4 (corresponding to a one-

dimensional temperature of 12 µK).

After this initial preparation, the trapping light and anti-Helmholtz fields were extin-

guished, and the atoms were exposed to the time-dependent optical lattice (in the form of a

periodic pulse train, in Chapter 4). It was during this stage that the interactions of physical

interest to us occured. Since we tracked the evolution of the atoms as they were exposed to

the optical lattice, this stage lasted from zero to about 2 ms. This time was limited by both the

capabilities of the control electronics as well as the requirement that the atoms not fall signifi-

cantly compared to the 1.5mmwaist of the lattice during this time. During this interaction, the
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1. Cool and trap atoms
in MOT
(5 s)

3. Free expansion
in the dark
(~15 ms)

4. Freezing molasses
and imaging
(10 ms)

2. Interaction with
optical lattice
(~1 ms)

Figure 3.14: Schematic picture of the experimental sequence for the experiments in Chapter 4.

(Graphics rendered by W. H. Oskay.)
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optical lattice modified the atomic momentum distribution, typically heating the center-of-mass

motion of the atoms through the optical forces.

The next stage in the experimental sequence was the measurement of the atomic mo-

menta. All laser light was extinguished, and the atoms were allowed to drift in the dark for 15

ms (or 20 ms for the experiments in Chapter 6; these quoted drift times include the variable

lattice interaction times, so the time spent in the dark depended on the duration of the lattice

interaction). During this time, the typical atommoved a distance that was large compared to the

initial diameter of the cloud. Thus, assuming that the initial sample was a point source, the dis-

placements of the atoms after the drift times was proportional to their corresponding momenta,

and so the spatial distribution of the atoms had the same form as the momentum distribution.

(More carefully, the final spatial distribution had the form of the momentum distribution con-

volved with the initial spatial distribution). To detect the momentum distribution, the atoms

were illuminated by the MOT trapping light, but without the anti-Helmholtz magnetic fields.

In this configuration, the cooling effect of these optical-molasses beams “froze” the atoms in

place, and the atomic fluorescence was recorded on the CCD camera. The imaging time was

kept relatively short (10 ms for the experiments of Chapter 4, 20 ms for Chapter 6) so that the

atoms did not move significantly during the measurement. To avoid an effectively nonuniform

exposure of the CCD as a result of the shutter opening (5 ms) and closing (12 ms) times, we

pulsed the freezing molasses light on only when the shutter was fully open.

The two-dimensional intensity distributions from the camera were therefore a direct

measurement of the two-dimensional momentum distributions of the atoms. Since we only

care about the atomic momenta in the direction of the optical standing wave, we integrated

over the transverse direction to obtain one-dimensional distributions. An example of such a

distribution is shown in Fig. 3.15. This measurement is the simplest type of experiment, where

no optical-lattice interaction is applied to the atoms, and hence constitutes a measurement of

the momentum distribution of the MOT (which is the initial condition for the experiments in

Chapter 4). The momentum distribution in the trap was mostly Gaussian, with broadened tails.

Similar distributions have been observed by other groups, especially for strong magnetic-field
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gradients (e.g., [Petrich94; Townsend95]). A good model for this momentum distribution is an

incoherent sum of a Gaussian and an exponential distribution:

ηg√
2πσp

exp
(
− p

2

2σ2p

)
+
ηe
2ξp

exp
(
−|p|
ξp

)
. (3.2)

The parameters for this model were determined from a best fit; the widths of the components

are σp/2�kL = 3.9 and ξp/2�kL = 13.0, and the relative weights are ηg = 82% and ηe = 18%.

The measured distribution is plotted in Fig. 3.15 along with the best-fit function (3.2). To char-

acterize the temperature of the atoms, we normally used a simple Gaussian model. When fitted

to the same atomic distribution, this model accounts for 96% of the atomic population, with

the remaining 4% augmenting the tails of the momentum profile. To minimize the convolution

effects of the MOT cloud on the temperature measurements, we also measured the nearly Gaus-

sian momentum distribution at several drift times. We could then extract the corresponding true

σp by fitting Gaussian lineshapes to measurements at each drift time, and fitting these Gaussian
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Figure 3.15: Plot of the momentum distribution in the MOT (solid line), with model distribu-

tion (3.2) (dotted line). Most of the atoms are in the main Gaussian component, while a smaller

fraction is contained in the broad, non-Gaussian tails. This distribution corresponds to the initial

conditions of our kicked-rotor experiments.
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widths to the model

σx(tdrift) =
√
(σx0) 2 + (σptdrift/m)2 , (3.3)

where σx(tdrift) is the measured spatial width parameter of the expanded MOT, σx0 is the spa-

tial width parameter of the initial MOT, and tdrift is the drift time. This model is the exact

convolution if the MOT spatial and momentum distributions are Gaussian.

3.8 Control Electronics

We give here a brief overview of the control electronics, and a more thorough discussion will

be published separately [Oskay01b]. For the experiments in Chapter 4, the entire experiment

was controlled by a single Power Macintosh 7100/80 computer. All data acquisition and control

software was programmed in LabVIEW. As mentioned above, the computer acquired the camera

images via a NuBus interface card. The computer also used a National Instruments NB-MIO-

16L-9 multipurpose I/O board. Although this board included many input and output functions,

the functionality of this board was severely limited by the fact that its various sections could

not be easily synchronized. This board was only used as a master trigger for the experiment and

for control of the anti-Helmholtz fields, but precision timing was delegated to several external

devices, including a Stanford Research Systems (SRS) DG535 timing/pulse generator and two

SRS DS345 arbitrary waveform synthesizers. The computer programmed these timing devices

through a National Instruments GPIB interface. The timing of various events was controlled

with the DG535, while the optical lattice and MOT trapping beam intensities were controlled

by the two DS345 synthesizers. To ensure precise timing, these three devices were slaved to

a common frequency reference, and later all timing devices were slaved to a rubidium clock

(LPRO model by EFRATOM) for extremely high absolute accuracy and stability.

For the more complex experiments in Chapter 6, the acquisition and control setup was

upgraded considerably. Most of the control and data processing was handled by a fast PowerMac-

intosh G4 (“Sawtooth”). However, because Princeton Instruments (now Roper Scientific) does

not provide a PCI interface card for our camera controller, the old 7100 computer still acquired

the camera images. The two LabVIEW processes on the two computers communicated via TCP.
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The more complex optical lattice intensity waveform was moved to an Agilent 33250A waveform

synthesizer which has much better temporal resolution and waveform memory (65, 535 samples

with as fast as a 5 ns sampling rate, compared to the 16, 299 sample, 25 ns rate of the DS345).

The new computer also handled many timing functions through a PCI-DIO-32HS digital in-

terface by National Instruments, which outputs up to 32 channels of TTL data through 50 Ω

drivers (at a clock rate of 1.25MHz, in our setup). Other timing functions that required voltage

levels other than TTL were handled by two DG535 units, and more complicated waveforms

were generated by five DS345 synthesizers.
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Localization and Decoherence in the Kicked Rotor
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4.1 Overview

Now we come to the first set of experiments discussed in this dissertation. In these studies,

we focus on a realization of the kicked-rotor problem, formed by periodically pulsing on the

optical standing wave. We will be concerned with the global (momentum) transport in the

kicked rotor, since the classical and quantum transport are quite dramatically different due to

dynamical localization. As we pointed out in Chapter 1, the difference between the quantum

and classical behaviors is an apparent problem for correspondence. The goal of the research in

this chapter is to directly address quantum–classical correspondence in the context of the kicked

rotor. We will see that decoherence due to spontaneous emission or externally-imposed noise can

destroy dynamical localization. Furthermore, we show that it is possible to obtain quantitative

correspondence (at the global level of distributions and expectation values) in the presence of

noise, even in a manifestly quantum regime.

The material presented in this chapter spans a number of previous publications from

our group. The initial work on external noise and spontaneous emission effects was presented

in [Klappauf98b]. The original confirmation of Shepelyansky’s quantum scaling and the obser-

vation of a nonexponential late-time distribution were both presented in [Klappauf98a]. The

effects of the finite pulses in the experiment were characterized in [Klappauf99]. This earlier

material is reviewed in [Klappauf98c], in more detail than we provide here. Later, we showed

that we could observe ballistic transport at quantum resonance [Oskay00], even without subre-

coil velocity selection. The quantitative studies of noise effects on quantum localization and the

return to the classical limit were presented in [Steck00; Milner00]. Finally, an experimental test

of a universal quantum diffusion theory was presented in [Zhong01].

4.2 Rescaling

The atom-optics realization of the kicked rotor is described by the Hamiltonian

H(x, p, t) =
p2

2m
+ V0 cos(2kLx)

∑
n

F (t− nT ) . (4.1)
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Here, T is the kick period, and F (t) is a pulse function of unit height and duration tp � T .

Before proceeding, we will transform to scaled units to simplify our discussion, as we did for the

pendulum in Chapter 1. As before, the spatial coordinate has a natural scaling,

x′ := 2kLx . (4.2)

This time, however, there is a natural time scale for the problem, which defines the scaling of

the time coordinate,

t′ := t/T . (4.3)

The corresponding scaling of the pulse is given by

f(t′) := F (t)/η , (4.4)

where we have defined the pulse integral

η := T−1
∫ ∞
−∞
F (t) dt ∝ tp, (4.5)

so that the scaled pulse is normalized to unity (i.e.,
∫∞
−∞ f(t) dt = 1). If we define the constant

k̄ := 8ωrT , (4.6)

then the time scaling here is different from the pendulum time scaling by precisely this factor.

This difference suggests that we should change the momentum scaling by the same factor,

p′ :=
k̄

2�kL

p . (4.7)

Now the scaled coordinates obey the commutation relation,

[x′, p′] = ik̄ , (4.8)

and thus we can interpret k̄ as a scaled Planck constant, which can be “tuned” by varying the

period T . More concretely, this parameter measures the action scale of the system in physical

units compared to �. We can then use the energy transformation H ′ := (k̄/�)TH , and defining

the stochasticity parameter as

K :=
k̄T

�
ηV0 , (4.9)
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the Hamiltonian in scaled units takes the form

H(x, p, t) =
p2

2
+K cosx

∑
n

f(t − n), (4.10)

after dropping the primes. In this way we have reduced the classical system to a single parameter

(K) and the quantum system to two parameters (K and k̄). Note that in these units, the

constant k̄ also represents the quantization scale for momentum transfer, rather than unity as in

the pendulum units or 2�kL in unscaled units.

4.3 Standard Map

In the limit of arbitrarily short pulses, the pulse function f(t) is replaced by the Dirac delta

function δ(t),

H(x, p, t) =
p2

2
+K cos x

∑
n

δ(t − n) , (4.11)

and this limit of the problem is commonly termed the “δ-kicked rotor.” This limit is particularly

convenient because the equations of motion can be reduced to a simple discrete map. From the

form of the Hamiltonian (4.11), we note that during the kick, the potential term dominates the

kinetic term. Between kicks, the potential term is zero, and the motion is that of a free rotor.

Using these observations, we can integrate the equations of motion over one temporal period of

the Hamiltonian.

Differentiating (4.11), Hamilton’s equations of motion become

∂tp = −∂H
∂x

= K sinx
∞∑

n=−∞
δ(t− nT )

∂tx =
∂H

∂p
= p .

(4.12)

We will integrate Eqs. (4.12) to construct a map for x and p just before the nth kick. Letting ε

be a small, positive number, we integrate the equation for p,

∫ tn+1−ε

tn−ε
∂tp(t) dt =

∫ tn+1−ε

tn−ε
K sinx

∑
n

δ(t − n) dt , (4.13)

where tn = n is the time of the nth kick. This equation then becomes

p(tn+1 − ε)− p(tn − ε) = K sinx . (4.14)
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Similarly, we integrate the equation for x,

∫ tn+1−ε

tn−ε
∂tx(t) dt =

∫ tn+1−ε

tn−ε
p dt , (4.15)

which becomes

x(tn+1 − ε)− x(tn − ε) = ε p(tn − ε) + (1− ε) p(tn+1 − ε) . (4.16)

Then, letting ε→ 0 and defining xn and pn to be the values of x and p just before the nth kick,

we obtain the mapping

pn+1 = pn +K sinxn
xn+1 = xn + pn+1 .

(4.17)

These equations, which constitute a one-parameter family of mappings parameterized by the

stochasticity parameter K, are known as the standard map (or Chirikov-Taylor map), so named

because of its broad importance in the study of Hamiltonian chaos. The significance of this

widely studied map is due to both its simplicity, which makes it amenable to both analytical and

numerical study, and the fact that many systems can be locally approximated by the standard

map [Chirikov79].

A number of standard-map phase plots are shown in Appendix B. The phase space for

the standard map is clearly invariant under a 2π translation in x, because of the corresponding

invariance of the mapping itself, and so x is usually taken to be within the interval [0, 2π). What

is perhaps less obvious is that the phase-space structure is also invariant under a 2π translation

in p, as well. This point is more easily recognized from the Hamiltonian of the δ-kicked rotor

(for which the standard-map phase space is a Poincaré section). Using a form of the Poisson sum

rule,
∞∑

n=−∞
δ(t− n) =

∞∑
n=−∞

cos(2πnt) , (4.18)

we can rewrite the δ-kicked rotor Hamiltonian as

H(x, p, t) =
p2

2
+K cosx

∞∑
n=−∞

cos(2πnt)

=
p2

2
+

∞∑
n=−∞

K cos(x− 2πnt) .
(4.19)
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From this form of the Hamiltonian, it is apparent that the δ-pulsed potential can be regarded

as a superposition of an infinite number of unmodulated pendulum potentials moving with mo-

mentum 2πn for every integer n. The Hamiltonian is therefore invariant under boosts of 2πn in

momentum, so the phase space is 2π-periodic in both x and p. Each of these pendulum terms is

associated with a primary nonlinear resonance in the phase space, located at (x, p) = (π, 2πn),

and the interactions between these resonances result in chaos and rich structure in phase space.

4.4 Classical Transport

We will now consider the global behavior in the standard map. In particular, we will consider

the transport in the limit of large K, where the phase space is predominantly chaotic (which

operationally means K � 5). Also in this limit, there are no Kolmogorov-Arnol’d-Moser (KAM)

surfaces that span the phase space, dividing the phase space in the momentum direction and pre-

venting chaotic transport to arbitrarily large momenta (this is true for any K above the Greene

number, KG ≈ 0.971635 [Greene79]). Broadly speaking, invariant surfaces (KAM surfaces,

which are traceable to invariant surfaces in the integrable limit, and islands of stability) con-

fine trajectories, while chaotic trajectories are free to ergodically wander throughout the chaotic

region. In the next section we will find that the chaotic motion can be thought of as being diffu-

sive (like a random walk), although the presence of small but nevertheless important islands of

stability complicate this diffusion picture.

4.4.1 Diffusion and Correlations

Focusing on the momentum transport in the standard map, we use the first equation in the

standard map (4.17) to calculate the kinetic energy of a trajectory ensemble after n iterations:

En :=
〈p2n〉
2

=
1
2

n−1∑
m,m′=0

Cm−m′ .
(4.20)

Here, the correlation functions Cm are defined as

Cm−m′ := 〈K sinxmK sinxm′〉 . (4.21)
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(A similar discussion along these lines can be found in [Cohen91], but with a slightly different

definition for the correlations.) The angle brackets here denote an average over the initial en-

semble. For the purposes of the present analysis, we can take this average to be uniform over the

unit cell in phase space, which is appropriate for the initial distribution of MOT atoms for the

experimental parameters (for which the distribution is broad in both x and p compared to the

unit cell size). The correlations also obviously depend only on the difference m −m′, as there

is no explicit time dependence in the standard map.

The sum in Eq. (4.20) can be straightforwardly evaluated if one makes the approxima-

tion that the coordinate xn is uniform and uncorrelated, as one might expect for very large K

when the phase space is almost entirely chaotic. Doing so allows one to ignore the off-diagonal

terms in the sum and gives the result

En =
C0

2
n =

K2

4
n . (4.22)

The energy growth is hence diffusive (linear in time), with diffusion rateDql(K) = K2/4, which

is known as the quasilinear diffusion rate. This quasilinear (random-phase) approximation is

equivalent to assuming that the motion is a randomwalk in momentum, and thus the momentum

distribution is asymptotically Gaussian with a width ∼
√
n.

The random-phase approximation is only valid in the limit of arbitrarily large K, how-

ever, and for finite K the higher-order correlations cannot always be neglected, even for trajec-

tories within the chaotic region of phase space. Nonuniformities in the chaotic region, especially

near the borders of stability islands, can lead to nonzero correlations, and thus to deviations of the

diffusion rate from the quasilinear value. A more general expression for the (time-dependent)

diffusion rate in terms of the higher-order correlations is

Dn := En+1 − En =
1
2

n∑
m=−n

Cm . (4.23)

These corrections to the diffusion rate were treated analytically in [Rechester80; Rechester81],

where the series (4.23) was shown to be an asymptotic expansion in powers of Bessel functions

of K. The result from [Rechester81] is

D(K) =
K2

2

(
1
2
− J2(K)− J 2

1 (K) + J
2
2 (K) + J

2
3 (K)

)
(4.24)
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to second order in the Bessel functions (we defer the derivation of these results to Section 4.8).

This expression represents the rate Dn of energy diffusion for long times n and large values of

K; the higher-order terms in the expansion are assumed at this point to have only a small contri-

bution, since they represent higher powers of 1/
√
K . In this expression, it is often convenient

to neglect J 2
3 (K) − J 2

1 (K), which is O(K
−2), since for largeK this difference is much smaller

than J 2
2 (K), which is O(K

−1); however, these terms will be important when generalizing this

result to account for amplitude noise below. This result shows that D(K) oscillates about the

quasilinear value, where the corrections become small compared to the quasilinear value as K

becomes large.

0

100

200

0 10 20 30

D
(K

)

K

Figure 4.1: Dependence of the rate of energy diffusion D on the stochasticity parameter. The

analytical diffusion expression [Eq. (4.24), dotted line] shows a significant oscillatory depar-

ture from the quasilinear prediction (dashed line). The simulated diffusion rate (solid line) is

computed assuming an initial condition of 105 particles distributed uniformly over a unit cell in
phase space, and is averaged over 1000 iterations of the standard map. The simulation agrees

with Eq. (4.24) except at the peaks of the diffusion curve, where the diffusion is dramatically

enhanced by the influence of accelerator modes.
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4.4.2 Accelerator Modes

The diffusion rate expression in Eq. (4.24) is plotted in Fig. 4.1 along with the diffusion rate

calculated in a simulation. The agreement is generally good, with the exception of the peaks in

the diffusion curve, where the simulated diffusion rate greatly exceeds the analytical prediction.

This discrepancy stems from the fact that we have so far assumed that the chaos causes the

correlation series (4.23) to drop off rapidly (i.e., exponentially). However, the presence of small,

stable islands (which are present for any value ofK) can make the longer time correlations impor-

tant, so that the correlation series decays slowly (i.e., like a power law [Karney83; Chirikov84]),

and as a result this series may not even rigorously converge.

The stable structures that cause the large deviations in Fig. 4.1 are the accelerator

modes [Chirikov79; Ishizaki91; Klafter96]. These structures are different from the usual stabil-

ity islands in that they are boosted by a constant amount in momentum on each iteration. The

main family of accelerator modes occur in the stability windows (2πj) < K <
√
(2πj)2 + 16 (for

integer j), where the corresponding accelerator mode hops monotonically by 2πj in momentum

per iteration [Chirikov79]. These intervals are precisely the locations of the strong deviations in

Fig. 4.1; note that the j = 0 case simply corresponds to the primary resonances, as we discussed

in the context of Eq. (4.19), whereas for j > 0 the accelerator modes are born by tangent bi-

furcations. From the inversion-symmetry properties of the standard map (i.e., invariance under

the combined transformation p → −p, x → −x), we can see that the accelerator modes occur

in pairs, which “stream” in opposite senses. The accelerator modes are obviously a peculiarity

of the standard map, a result of the periodicity of the phase space in the momentum direction.

Other systems, such as the experimental realization of the kicked rotor (which uses finite, not

δ-function, kicks) can still exhibit quasiaccelerator modes, which behave like accelerator modes

over a bounded region in phase space [Lichtenberg92].

The behavior of the trajectories trapped within stable islands and accelerator modes

is clearly different in nature from that of chaotic trajectories. However, these coherent phase-

space structures can still have a strong influence over the behavior of chaotic trajectories. The

boundaries of the islands, where the stable regions merge into the surrounding chaotic sea, are
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Figure 4.2: Upper graph: plot of the iterates pn for a standard-map trajectory in the presence
of accelerator modes, showing Lévy-flight behavior. The stochasticity parameter is K = 6.52,
and the initial condition is (x0, p0) = (3, 3.5). The Lévy flights are apparent as sudden jumps
in momentum as a result of many successive steps in the same momentum direction. Lower

graph: plot of the iterates pn for a standard-map trajectory showing normal diffusive behavior.
The stochasticity parameter isK = 9.5, and the initial condition is (x0, p0) = (3, 3.5).
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complicated and fractal in nature. This structure causes the island boundaries to be “sticky”

in the sense that chaotic trajectories can become trapped for some finite time in the boundary

layer. As the chaotic trajectories wander throughout the phase space, they will eventually wander

close enough to any island to become trapped. The self-similar structure of the boundary causes

these trapping times to have a power-law distribution [Karney83], and the resulting dynamics

are characterized by Lévy-flight behavior, rather than simple diffusion [Klafter96]. The regular

stability islands tend to trap trajectories at a fixed momentum, leading to reduced momentum

transport, whereas the accelerator modes lead to streaming (with many correlated momentum

steps), and therefore to enhanced momentum transport. This subdiffusive or superdiffusive

behavior due to island structures is referred to as anomalous diffusion [Chirikov84; Geisel87;

Klafter96; Benkadda97; Zumofen99]. The momentum distribution in this regime has asymp-

totically power-law tails, rather than Gaussian tails, and the kinetic energy scales as E(t) ∼ tµ,

where the transport exponent µ �= 1 for anomalous diffusion. The Lévy flights in a standard-map

trajectory are apparent in Fig. 4.2, especially compared to a diffusive trajectory, shown also in this

figure.

As the transport in the standard map is not strictly diffusive, the proper framework for

the global dynamics is fractional kinetics [Zaslavsky97; Saichev97; Zaslavsky99]. However, since

the stable islands in phase space are typically small for large K (the areas of the islands are

asymptotically of the orderK−2 [Chirikov79]), it may take many kicks before the islands cause

large deviations from diffusive behavior. Hence, for the time scales observed in our experiments

(up to 80 kicks), it is appropriate to describe the classical dynamics as diffusive as long as large

accelerator modes are not present. Operationally, Eq. (4.24) is an excellent approximation away

from the main family of accelerator modes.

4.4.3 External Noise

The transport that we have studied is heavily influenced by correlations, and we might expect

that noise will therefore also have substantial effects on the global dynamics. One type of deco-

hering interaction that we will study more in Section 4.5.4 is spontaneous emission. To model
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the effects of spontaneous emission in the standard map, we could simply consider a fluctu-

ating momentum perturbation that models the random momentum recoil of the atom in re-

sponse to the photon scattering. We can compare this situation qualitatively to the results of

Ref. [Karney82] (see also [Lichtenberg92]), which considers the generalized (noisy) mapping

pn+1 = pn +K sinxn + δpn
qn+1 = qn + pn+1 + δxn ,

(4.25)

where δpn and δxn are time-dependent random variables. In the case where δpn and δxn are

chosen from a normal distribution, the diffusion rate from Eq. (4.24) becomes

D(K) =
K2 + 2ρ2

4
+
K2

2

[
− J2(K)e−(σ

2+ρ2/2)

− J 2
1 (K)e

−(σ2+ρ2) + J 2
2 (K)e

−(2σ2+ρ2) + J 2
3 (K)e

−(3σ2+ρ2)

]
,

(4.26)

where ρ2 is the variance of δpn, and σ
2 is the variance of δxn. The noise therefore affects the dif-

fusion by exponentially damping the higher-order correlations, and the momentum perturbation

also gives a direct contribution to the quasilinear term.

For the quantitative comparison of quantum and classical dynamics of the kicked rotor

in Section 4.6, we used amplitude noise, where the value of K is randomly varied from kick to

kick. This interaction has the advantage of being easy to apply and quantify compared to other

decohering interactions such as spontaneous emission. We can also treat the effects of this noise

on the classical correlations analytically, as we now discuss (again, some of the more gruesome

details are left to Section 4.8). The standard map including amplitude noise is

pn+1 = pn + (K + δKn) sinxn
qn+1 = qn + pn+1 ,

(4.27)

where δKn is a random deviation for the nth kick, distributed according to P (δK), with zero

mean. The noise again modifies the correlations, and the generalization of (4.21) is

Cm−m′ =
∫
d(δKm) · · ·d(δKm′ )P (δKm) · · ·P (δKm′)

×〈(K + δKm) sinxm(K + δKm′ ) sinxm′ 〉,
(4.28)

where there are |m − m′| + 1 integrals over the kick probability distribution, because the co-

ordinate at the later time depends on all the kicks after the earlier time. As we can see from
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Section 4.8, each factor of K (the two factors of K and several factors of Jn(K)) in Eq. (4.24)

enters as an independent random variable, so that the integration in (4.28) amounts to averaging

over each factor independently. The resulting generalization of (4.24) is

D(K) =
K2 + Var(δK)

4
+
K2

2
(
−J2(K) − J 2

1 (K) + J 2
2 (K) + J 2

3 (K)
)
. (4.29)

In this equation, Var(δK) denotes the variance of P (δK), and

Jn(K) :=
∫ ∞
−∞
P (δK)Jn(K + δK)d(δK). (4.30)

This expression makes it immediately clear how amplitude noise affects the diffusion rate: the

integral in Eq. (4.30) is analogous to a convolution of the Bessel functions with the noise distribu-

tion. As the noise level is increased, the Bessel functions are smoothed out, and the correlations

are effectively destroyed. This is especially true for long-term correlations, and indeed anoma-

lous diffusion is suppressed in the presence of noise. At the same time, there is an increase in

the quasilinear diffusion component, because the fluctuating kick strength leads to a fluctuating

momentum perturbation, but this effect is generally small in comparison to the destruction of

the correlations.

In the experiments, we considered exclusively the case of amplitude noise with a uni-

form probability distribution,

P (δK) =
{
1/δKp−p, δK ∈ (−δKp−p/2, δKp−p/2)

0 elsewhere, (4.31)

where δKp−p is the peak-to-peak deviation of the kick strength. When we quote the noise level

used in our experiments, we are quoting the normalized peak-to-peak deviation δKp−p/K. For

this noise, the variance, which characterized the contribution to the quasilinear diffusion, is

Var(δK) = (δKp−p)2/12, and from Eq. (4.30), the correlation contributions to the diffusion in

(4.24) are simply convolved with a “box” window. For illustration, the function (4.29) is plot-

ted for several different levels of amplitude noise in Fig. 4.3. Notice that for the 100% and

200% noise levels, the correlations are essentially destroyed, so that these noise levels cannot be

considered perturbative; however, these noise levels are still small in the sense that their contri-

bution to the quasilinear diffusion rate is significantly smaller than the zero-noise component.
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4.4.4 Finite-Pulse Effects

In a real experiment, we obviously cannot realize exact δ-kicks, but we can use short laser pulses

to work near this limit. The standard map is a valid model of the finite-pulse kicked rotor if

the motion of the atom is negligible throughout the duration of the pulse, because this situation

mimics the strobe-like nature of the δ-function pulses. This observation implies that the δ-kick

approximation is valid within a bounded interval in momentum about p = 0. We can obtain a

crude estimate for the momentum at which the δ-kick approximation breaks down by consider-

ing an atom moving with a velocity such that it travels over one period of the optical lattice over

the duration tp of the pulse. The momentum transferred to the atom is approximately zero, and

thus the momentum pb for this “boundary” is

pb
2�kL

=
mλ2

8π�tp
, (4.32)

where all quantities are in physical units. The dependence of this boundary on the atomic

mass m and the lattice wavelength λ motivated the use of a cesium-based apparatus for these
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Figure 4.3: Plot of the diffusion expression (4.29) for several levels of amplitude noise (with

uniformly-distributed statistics): no noise (solid line), 50% noise (dashed line), 100% noise

(dotted line), and 200% noise (dot-dashed line). The oscillations, which represent short-term

correlations, are smoothed out by the noise.
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experiments over the previous sodium-based apparatus, in order to realize an increase in pb/2�kL

by a factor of 12 for fixed tp.

We can make this momentum boundary effect due to finite pulses more precise by

reconsidering the form (4.19) for the kicked-rotor Hamiltonian. We can write the kicked-rotor

Hamiltonian (4.10) for finite pulses as

H(x, p, t) =
p2

2
+K cosx

∞∑
j=−∞

cje
−i2πjt , (4.33)

where the Fourier coefficient cj is given by

cj =
∫ 1

0

∑
n

f(t − n)ei2πjt dt . (4.34)

Figure 4.4: Phase-space plots for the kicked rotor with K = 10.5 in the cases of (a) δ-kicks,
(b) square pulses with pulse width tp/T = 0.014, and (c) square pulses with tp/T = 0.049.
Case (b) is similar to the pulses used in the experiments in this chapter. The effect of the finite

pulses is to introduce KAM surfaces at large momenta in the otherwise chaotic phase space.
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This Hamiltonian can in turn be rewritten as

H(x, p, t) =
p2

2
+K

∞∑
j=−∞

|cj| cos(x− 2πjt + φj) , (4.35)

where we have defined the phases of the coefficients by cj = |cj| exp(iφj), and we have used

the fact that cj = c∗−j . Also, from the definition of f(t), the coefficient c0 of the stationary term

is unity. In the case of δ-kicks, we saw that cj = 1 holds true for all the coefficients. However,

for finite pulses the Fourier weights drop off with increasing j, so that the primary resonances

are attenuated at large momentum. Larger pulse widths imply a narrower spectrum, and hence

a boundary at lower momentum, as we discovered using the simpler estimate above.

The effects of finite pulses are illustrated in Fig. 4.4, which shows the phase space for a

δ-kicked rotor compared with two phase spaces corresponding to kicks with square pulse profiles.

For the case of square pulses, we can define a momentum-dependent effective stochasticity

parameter based on the Fourier transform argument as

Keff(p) = Ksinc
(
tpp

2

)
, (4.36)

where sinc(x) = sin(x)/x, and p and tp are scaled variables. This sinc profile is especially

apparent in Fig. 4.4(c), where the phase space becomes stable as Keff drops below ∼ 1 (re-

call that the “stochasticity border” for the kicked rotor occurs near K = 1), becomes unstable

again as it drops below ∼ −1, and so on. The phase space in Fig. 4.4(b) corresponds closely to

the situation in our experiments, and from this plot it is apparent that the momentum bound-

ary occurs well outside the range of |p/2�kL| < 80 that we measure experimentally. More

details about this momentum boundary and its effects on quantum transport can be found in

[Klappauf98b; Klappauf99].

4.5 Quantum Transport

Nowwe turn to the subject of quantum transport in the kicked rotor. We introduced in Chapter 1

the dynamical localization phenomenon, where the quantum transport is in sharp contrast with

the diffusive classical transport. The main symptom of dynamical localization is that momentum



4.5 Quantum Transport 117

transport is frozen after the break time tB. The underlying discrete-spectrum nature of the

quantum dynamics also makes the quantum system numerically reversible, and hence manifestly

nonchaotic, as we have also seen. In this section, we will examine several aspects of quantum

transport in the kicked rotor, including some of the effects of noise on the quantum transport,

and relate quantum and classical transport via their respective correlations.

4.5.1 Quantum Mapping

The equation of motion for the quantum δ-kicked rotor is just the Schrödinger equation,

ik̄∂t|ψ〉 = H |ψ〉 , (4.37)

where the Hamiltonian is given by Eq. (4.11). To derive a mapping for the quantum evolution,

we start with the time-evolution operator U(t, t0) (so that |ψ(t)〉 = U(t, t0)|ψ(t0)〉) for a system

with a time-dependent Hamiltonian [Berestetskii71],

U(t, t0) = T exp
[
− i

�

∫ t
t0

H(t′) dt′
]
, (4.38)

where T is the chronological (time-ordering) operator, which is necessary when H(t) does not

commute with itself at different times. Using a procedure similar to that used in the derivation

of the classical standard map, we can write the kicked-rotor evolution operator as

U(n + 1, n) = exp
(
− ip

2

2k̄

)
exp
(
− iK cosx

k̄

)
, (4.39)

where the “kick” operator acts on the state vector first, followed by the “drift” operator.

The quantum mapping in the form (4.39) is particularly suitable for calculations, be-

cause each component of the operator is diagonal in either the x or p representation, and thus

is simple to apply to the wave function after appropriate Fourier transforms. Alternately, we can

express the quantum mapping entirely in the momentum basis by using the generating function

for the Bessel functions Jn(x), with the result

ψn+1(p) = exp
(
− ip

2

2k̄

) ∞∑
l=−∞

ilJl(K/k̄)ψn(p − lk̄) , (4.40)
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where ψn(p) is the wave function in the momentum representation just before the nth kick.

The ladder structure in momentum space is once again apparent in this form of the mapping.

Also, since Jn(x) drops off exponentially with n for n > x, each kick couples any given state to

about 2K/k̄ other states.

Because the Hamiltonian for the kicked rotor is explicitly time-dependent, the energy

is not a constant of the motion, and therefore there are no stationary states for the system.

However, since the Hamiltonian is time periodic, we can define temporal Floquet states (or

quasienergy states), in analogy with the spatial Floquet/Bloch solutions for the eigenstates of

a periodic potential that we discussed in Chapter 2. We can write these states in an arbitrary

representation as

ψε(t) = e−iεt/k̄uε(t) , (4.41)

where uε(t) is a periodic function of time (with the same unit period as the scaled Hamiltonian),

and ε is the quasienergy of the state. These states are eigenstates of the one-period evolution

operator,

U(n+ 1, n)ψε = e−iε/k̄ψε , (4.42)

and thus are eigenstates in a stroboscopic sense, since their probability distribution is invariant

under one period of time evolution.

Before continuing with the discussion of the quantum kicked rotor dynamics, it is useful

to consider one more form for the quantum evolution equations. In the Heisenberg representa-

tion, we can integrate the Heisenberg equation of motion for the operators to obtain a map for

the operators xn and pn just before the nth kick:

pn+1 = pn +K sinxn
xn+1 = xn + pn+1 .

(4.43)

This Heisenberg map has exactly the same form as the classical standard map (4.17), but with

the classical variables replaced by quantum operators. What may seem surprising at first is that

there is no mention of the quantum parameter k̄. On iteration of the map, the sin function will

operate on combinations of x and p, generating products of these operators at all orders, and thus

Planck’s constant enters via the commutation relation [x, p] = ik̄. As we argued in Chapter 1,
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then, it is the nonlinearity that brings about quantum deviations from the classical behavior, and

we also expect quantum effects to show up after repeated iterations of the map, rather than after

a single time step.

4.5.2 Dynamical Localization

The work of Fishman, Grempel, and Prange (FGP) [Fishman82; Grempel84; Fishman96] marked

an importantmilestone in the understanding of quantum localization. In this work, FGP showed

that the quantum mapping for the kicked rotor could be written in a form that suggests a strong

analogy with the problem of Anderson localization in one dimension [Anderson58; Fishman96].

The Anderson problem considers the transport of an electron in a disordered potential, which

consists of an array of barriers with flat regions between. The barriers are characterized by trans-

mission and reflection probabilities, and classical particles that obey these particles would diffuse

spatially throughout the potential. In the quantum case, if the barriers are arranged in a peri-

odic fashion, there are certain particle energies that permit ballistic motion through the lattice

(corresponding to the Bloch states of the system). This transport is analogous to the quantum

resonance in the kicked rotor, to which we will return in Section 4.5.3. If the barriers are dis-

ordered, though, there is no resonance condition for long-range transport. In a path-summation

picture [Feynman65], there are many paths by which an electron can travel to a distant site, but

as a result of the disorder, the paths have randomphases with respect to each other and thus tend

to destructively interfere, effectively suppressing the quantum propagator for long-range tran-

sitions. The eigenfunctions in the Anderson problem are known to be exponentially localized,

as opposed to the extended Bloch states. Additionally, FGP argued that although the kicked

rotor has a dense point spectrum, the quasienergy spectrum is locally discrete in the sense that

a localized excitation in momentum leads to a discrete spectrum, as states close together in

quasienergy correspond to states that are widely separated in momentum [Grempel84].

In the Anderson-like form of the kicked rotor, the discrete “sites” are the plane-wave

states in a momentum ladder, which are coupled by the kicks. The diagonalmatrix elements that

describe the lattice-site energies are pseudorandom [Fishman96] if k̄/2π is an irrational num-
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ber (the rational case corresponds to the quantum-resonance phenomenon). In a more direct

picture, the free phase evolution exp(−ip2/2) between each kick causes the momentum-state

phases to “twist,” and the phases of widely separated momentum states become effectively

randomized by this part of the evolution for generic values of k̄. This pseudorandomness has

essentially the same effect as the disorder in the Anderson problem, and thus the kicked-rotor

Floquet states are likewise exponentially localized. This result provides a useful context for un-

derstanding dynamical localization, since the evolution to a localized state can be viewed as a

dephasing of the quasienergy states. An initial momentum distribution that is narrow compared

to a typical quasienergy state must be a coherent superposition of Floquet states. As time pro-

gresses, the precession of the phases of the basis states (each with different quasienergy) results

in diffusive behavior for short times. At long times, when the basis states have completely de-

phased, the distribution relaxes to an incoherent sum of the exponentially localized basis states,

resulting in an exponentially localized momentum distribution. For very long times, one also

expects quantum recurrences as the basis states rephase [Hogg82], but these timescales are far

beyond what we can observe experimentally.

An experimental measurement of dynamical localization is shown in Fig. 4.5. This plot

shows essentially the picture at which we just arrived: the initially narrow momentum distribu-

tion relaxes after a short time into a nearly stationary, exponential profile. The shapes of the dis-

tributions at various times are shownmore clearly in Fig. 4.6. In this semilog plot, the exponential

tails of the distribution at late times appear as straight lines. In viewing these measurements, it

is important to realize that this localization is indeed dynamical localization and not the less in-

teresting “adiabatic localization” [Fishman96], which is a result of the momentum boundary that

we described above, and is a classical effect. The clean exponential tails that we observe make it

clear that the dominant effect is dynamical localization, as adiabatic localization is characterized

by more sharply truncated tails at the momentum boundaries [Klappauf98c; Klappauf99].

The analysis that revealed the exponential nature of dynamical localization has implic-

itly assumed a kicked rotor, not a kicked particle. Since the continuous momentum space of

the particle consists of many discrete, uncoupled, rotor-like momentum ladders, the same ar-
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guments apply to each ladder separately, and we expect localization to occur in a similar way in

the experiment. In fact, if the momentum distribution is coarse-grained on the scale of k̄, the

particle momentum distribution evolves to a much smoother exponential profile than the rotor,

due to averaging over the many ladders.

4.5.3 Quantum Resonances

In the cases where k̄/2π is a rational number, themotion is of quite a different (but still distinctly

nonclassical) character. To illustrate the effect here, we consider the case of k̄ = 4π, and we

restrict our attention to the “symmetric” momentum ladder, p = sk̄ for integer s (i.e., we are

assuming a kicked rotor, rather than a particle). The kinetic energy part of the evolution operator

Figure 4.5: Experimental measurement of the momentum-distribution evolution in the kicked

rotor, showing dynamical localization. Here K = 11.5 ± 10%, T = 20 µs (k̄ = 2.077), and
tp = 0.283 µs. The nearly Gaussian initial distribution (σp/2�kL = 4.4) relaxes rapidly to an
exponential profile, which expands slowly.
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from (4.39),

exp
(
− is

2 k̄

2

)
, (4.44)

collapses to unity, and the evolution operator for n kicks can be written as

exp
(
− inK cosx

k̄

)
. (4.45)

This operator is equivalent to the operator for a single super-kick with stochasticity parameter

nK. Recalling the analysis based on the expanded form (4.40) of the quantum standard map,

the wave packet in this case will have propagating edges (asymptotically) at p = ±nK. Corre-

spondingly, the kinetic energy increases as t2, which is characteristic of ballistic transport. This

phenomenon is known as a quantum resonance [Izrailev79; Izrailev80], and is related to the

Talbot effect in wave optics [Berry99].

The situation is obviously more complicated for the kicked-particle case, since the evo-

lution operator does not trivially collapse for the other momentum ladders. The other states do

not exhibit ballistic transport, but rather form a localized, Gaussian-like profile, which is nar-

rower than the corresponding exponentially localized case [Moore95]. An analytic treatment of
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Figure 4.6: Experimentally measured momentum distribution evolution, shown for 0, 10, 20, 40,
and 80 kicks (K = 11.2 ± 10%, k̄ = 2.077); the zero-kick case is the narrowest distribution,
and the 80-kick distribution is highlighted in bold. Because the vertical axis in this plot is

logarithmic, the tails of the localized (exponential) distribution appear as straight lines.
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Figure 4.7: Experimental observation of ballistic transport at quantum resonance. The evolution

of the atomic momentum distribution is plotted for the experimental measurement (a, b) and

quantum simulation (c, d). The parameters are k̄ = 4π (T = 121 µs) and K = 184. The
simulation assumed square pulses with tp = 0.295 ns, and used an initial condition constructed
directly from the experimentally measured initial distribution. In order to obtain good qualita-

tive agreement and avoid numerical artifacts, a large simulation (that averaged over an ensemble

of 50 wave packets, with centers distributed uniformly in position, and employed a grid span-

ning p/2�kL = ±256 with a resolution of ∆p/2�kL = 1/1024, binned over 2�kL for a smooth

distribution) was necessary.
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the transport in this more general case can be found in [Bharucha99]. The coexisting ballis-

tic and localized behaviors at the k̄ = 4π quantum resonance are visible in the measured and

simulated evolutions in Fig. 4.7.

Experimentally, only the low-order quantum resonances (with k̄ an integer or half-

integer multiple of 2π) cause visible deviations from localization, as the higher-order resonances

can take extremely long times to become manifest. The other low-order case that we have stud-

ied is the “antiresonance” at k̄ = 2π. For the symmetric momentum ladder, the kinetic-energy

part of the evolution operator collapses to (−1)s for the state p = sk̄, which effectively amounts

to a time-reversal operator (p → −p). In this case, an initial state on this ladder reconstructs

itself every other kick. In the general particle case, the behavior is similar to that of the k̄ = 4π

resonance [Oskay00].

4.5.4 Delocalization

We now turn to the concept of the destruction of localization in the quantum kicked rotor. As

the deviation from the classical dynamics is primarily a result of long-time quantum correlations,

dynamical localization should be susceptible to external noise and environmental interaction,

either of which would suppress these correlations. Note that noise and environmental interac-

tion are fundamentally different in nature: noise is a unitary process, and is hence reversible

in principle, whereas the latter case is an interaction with a very large (i.e., possessing many

degrees of freedom) external system (reservoir), which is an inherently irreversible process.

However, a noisy (stochastic) perturbation is the important effect of the environment, as we

argued in Chapter 1, so that from an experimental point of view, these two situations are effec-

tively equivalent. For the quantitative study of delocalization in Section 4.6, we chose to study

noise effects because of the high degree of experimental control over the noise implementation.

The first theoretical study of the influence of noise on the quantum kicked rotor appeared in

[Shepelyansky83], where it was found that a sufficiently strong random perturbation could re-

store diffusion at the classical rate. Soon thereafter, a more detailed theoretical treatment was

presented by Ott, Antonsen, andHanson [Ott84], who showed that if the scaled Planck constant
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is sufficiently small, classical diffusion is restored, even for small amounts of added noise.

In the heuristic picture presented in [Fishman96], the noise can be characterized by a

coherence time tc, beyond which quantum coherence is destroyed. In the case of weak noise,

where tc � tB, the noise restores diffusion after the break time at a rate proportional to 1/tc,

which is much slower than the initial classical-like diffusion phase. If, on the other hand, the

coherence time is less than the break time, then we expect (for small �) that localization is

completely destroyed and classical behavior is restored.

We will now examine experimental evidence that localization can be destroyed by in-

teraction with optical molasses. This situation is effectively an interaction with a dissipative

environment, which causes momentum perturbations due to the photon absorption and emis-

sion and also dissipation of kinetic energy due to the cooling effect of the molasses. The effect

on the kinetic energy evolution is plotted in Fig. 4.8 for several different values of the spon-

taneous scattering rate. Qualitatively, the energy diffusion increases with increasing scattering

rate. This increased heating cannot be explained in terms of trivial photon-recoil heating be-
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Figure 4.8: Experimental observation of decoherence due to spontaneous photon scattering in

optical molasses. The scattering probabilities are 0% (circles), 1.2% (filled triangles), 5.0%
(open triangles), and 13% (diamonds) per kick, and the kicked-rotor parameters areK = 11.9±
10% and k̄ = 2.077. Although spontaneous emission generally causes momentum diffusion and

therefore heating of the atomic sample, the optical molasses cools the atoms, as shown in the

inset, where the molasses interaction was added after the lattice kicks. Thus, the enhanced

diffusion in this dissipative case is due only to the destruction of localization.
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cause the molasses cools the distribution, and so the increased heating indicates the destruction

of localization. The corresponding effect of the molasses light on the momentum distribution

evolution is shown in Fig. 4.9. The exponential profile is again evident in the zero-noise case.

As the spontaneous emission is applied, the late-time distribution becomes rounder, taking on

a Gaussian profile in the cases of 5.3% and 13% scattering probability per kick (this seems to

disagree with [Doherty00], where it is claimed that the distributions remain “essentially expo-

nential” with scattering rates around 5%/kick).

The reader may notice in Fig. 4.8 that the late-time energy growth in the zero-noise

case, while slower than the short-time growth, is still nonzero, as we might expect from a simple

picture of localization. However, “perfect” localization is not necessarily expected over the time

scales considered in the experiment, as we can see from the quantum simulation in Fig. 1.5.
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Figure 4.9: Experimental study of how the dissipative optical molasses interaction influences

the momentum distributions in the quantum kicked rotor. The scattering rates here, 0%, 1.2%,
5.3%, and 13%, correspond closely to those displayed in Fig. 4.8. At the higher scattering rates,
the late-time distribution makes a transition from the localized exponential profile to a classical-

like Gaussian shape (which appears parabolic in these semilog plots).
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We have verified that this late-time growth is not due to the nonideal effects of the optical

lattice discussed in Chapter 2 by varying the lattice detuning while keeping V0 constant by

compensating with a corresponding lattice intensity change. The other sources of noise are

small, but it is difficult to rule out residual phase noise of the lattice (caused by mechanical

vibrations of the retroreflecting mirror) as a contribution to late-time diffusion. (Recall that we

have characterized the phase noise in the optical lattice in Section 3.4.2).

We have also studied the effects of amplitude noise in the quantum kicked rotor (we

examine these results in Section 4.6), as well as noise in the time between kicks and sponta-

neous emission from a far-detuned traveling wave applied between kicks. All of these noises

cause a similar transition from localization to classical-like diffusion at late times. The dif-

ferent types of noise should in principle be different in nature. Amplitude noise is “ladder-

preserving,” which means that atoms can still only change momentum by 2�kL at a time, even

with this perturbation. Other types of noise, such as spontaneous emission, are “nonperturba-

tive” in the sense that they can break this ladder symmetry. As a result of the interaction of the

previously uncoupled ladders, this noise can lead to more effective destruction of localization

[Cohen91; Fishman96; Cohen99]. A quantitative comparison between perturbative and non-

perturbative noises is difficult, though, and we cannot distinguish any differences based on our

current data. A clean quantitative study would probably best be accomplished with different

types of noise than we have studied, which could be for example a perturbation by a second

lattice with a different period [Cohen99] (realized by crossed but not counterpropagating laser

beams).

4.5.5 Quantum Correlations

The above analysis leading to exponential quantum localization was based on dynamically gen-

erated disorder, and therefore we might expect that correlations also play an important role in

the quantum dynamics. Shepelyansky showed numerically [Shepelyansky83] and analytically

[Shepelyanskii82] that whereas the classical correlations drop off quickly with time (when any

residual stable structures are too small to affect the dynamics on a short time scale, i.e., away
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from the accelerator modes), the quantum correlations persisted for much longer times than the

corresponding classical correlations. In contrast, for cases of smaller K (and hence more stabil-

ity), the quantum and classical correlations were similar after the break time. This difference

in the correlations is intuitively clear from Eq. (4.23). For localization, the long-time quantum

correlations near the break time must be negative, bringing this sum to nearly zero, in order for

the diffusion to freeze. For the quantum resonance case, the correlation series must have a long

positive tail, such that the sum (4.23) diverges.

Shepelyansky also made another important observation regarding the quantum correla-

tions, which will be important for the interpretation of the results presented here. In particular,

he calculated the first few quantum correlations and found that they had approximately the

same form as the corresponding classical correlations upon the substitution [Shepelyansky87;

Shepelyanskii82; Cohen91]

K −→ Kq :=
sin(k̄/2)
k̄/2

K . (4.46)

(Note, however, that the correlations used in [Shepelyansky87] were defined without the factor

ofK2 that appears in Eq. (4.21).) Hence, a good approximation for the initial quantum diffusion

rate in the absence of noise is

Dq(K, k̄) =
K2

2

(
1
2
− J2(Kq)− J 2

1 (Kq) + J 2
2 (Kq) + J 2

3 (Kq)
)
, (4.47)

where, as in the classical calculation, it is assumed that the initial quantum distribution is uni-

form over the unit cell in the classical phase space. Consequently, there is an oscillatory de-

pendence of the initial quantum diffusion rate on Kq that is closely related to the underlying

classical dynamics. However, the oscillations are shifted due to the quantum scaling factor in

(4.46). Since the width of the localized distribution (the localization length) is related to the

initial diffusion rate by the heuristic/numerical result [Shepelyansky87; Fishman96],

tB ≈ ξ = Dq

k̄2
(4.48)

(where ξ is the localization length of the Floquet states, so that the momentum probability

distributions have the form exp[−|p − p0|/(ξ/2)]), these oscillations are also apparent in the

long-time quantum distributions.
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This oscillatory structure and the confirmation of the quantum scaling is shown in

Fig. 4.10, where the experimentally measured energy is plotted for a fixed interaction time as a

function ofKq. The correct quantum scaling causes the oscillations in these curves to match for

different k̄. At the maxima of these curves, the late-time momentum distributions are not ex-

ponential, having more of a curved profile in the tails, as shown in Fig. 4.11. This effect is likely

an influence of the accelerator modes and possibly other stable structures. Theoretical work has

shown that classical anomalous transport enhances fluctuations in the Floquet-state localization

lengths [Sundaram99a], and the deviations of the quasienergy states from a purely exponential

shape may also be due to classical correlations [Satija99]. We will also return to this issue of the

late-time distribution shape in Section 4.7.

Notice that to reach the classical limit in our experiment, the short-term correlations

must also be modified by the noise. This is especially true in view of the shift caused by the

quantum scaling factor in (4.46), which shifts the diffusion oscillations by about 20% in K for

Figure 4.10: Experimental verification for the scaling of Kq. The measured ensemble kinetic

energy is plotted for a fixed time as a function of the rescaled stochasticity parameter for several

values of k̄. The measurement times are 35 kicks (k̄ = 1.04, 1.56, 2.08, 3.12, 4.16), 28 kicks
(k̄ = 5.20), and 24 kicks (k̄ = 6.24). The solid line is a plot of the classical (standard map)
diffusion rate, Eq. (4.24). The locations of the oscillatory structures match well when plotted in

terms of the rescaled K, supporting the validity of the Kq scaling.
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the typical experimental value k̄ = 2.08 in the experiments here. It is possible to generalize the

work of Shepelyansky leading to Eq. (4.47) to include amplitude noise in essentially the same

way as in the classical calculation, with the result (see Section 4.8 for details)

Dq(K, k̄) =
K2 +Var(δK)

4
+
K2

2
(
−Q2(Kq)−Q 2

1 (Kq) +Q 2
2 (Kq) +Q 2

3 (Kq)
)
, (4.49)

where

Qn(Kq) :=
∫ ∞
−∞
P (δK)Jn(Kq + δKq)d(δK), (4.50)

and δKq = δK sin(k̄/2)/(k̄/2). Thus, the short-time quantum correlations are washed out in

much the same way as the classical correlations, as in Eq. (4.29). However, since the locations

of the classical and quantum oscillations in D(K) are different for our operating parameters,

we can conclude that in order to observe good correspondence between quantum and classical

evolution, the applied noise must be very strong (i.e., we must have tc on the order of one kick,

so that all the higher-order correlations are destroyed). In this case, both quantum and classical

diffusion will proceed at the quasilinear rate, since the diffusion oscillations will be destroyed (as
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Figure 4.11: Experimentally measured momentum-distribution evolution, shown for 0, 10, 20,
40, and 80 kicks. In this plot,K = 8.4±10%, k̄ = 2.077, corresponding to a peak in the quantum
diffusion curve (as in Fig. 4.10). The zero-kick case is the narrowest distribution, and the 80-

kick distribution is highlighted in bold. The late-time distribution is qualitatively different from

the exponentially localized case in Fig. 4.6, which corresponds to a minimum in the quantum

diffusion curve.
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in Fig. 4.3), and the global behavior will be the same. For lower levels of noise, we might expect

to recover diffusive behavior in the quantum system (if the long-time correlations responsible

for localization are destroyed), but possibly at a rate that does not match the classical prediction.

Heuristically, in the picture of [Ott84; Cohen91], the noise causes diffusion in momentum at a

rate 2D, and we can expect coherence to be broken when diffusion occurs on the scale k̄ between

neighboring momentum states, so that

tc =
k̄2

2D
. (4.51)

For the case of uniformly distributed amplitude noise, this estimate becomes

tc =
24k̄2

(δKp−p)2
. (4.52)

We can insert some values corresponding to the data to be analyzed in Section 4.6.2.1, where

K = 11.2 and k̄ = 2.08. In order to break localization, we must have tc ∼ tB, which is around

10 kicks in the experimental data, thus requiring about 30% amplitude noise. To obtain good

correspondence, however, requires tc ∼ 1 for quasilinear diffusion, and thus the higher noise

value of around 90%. These simple estimates are in reasonable agreement with the experimental

data.

4.6 Quantitative Study of Delocalization

Up to this point, we have shown that noise can lead to a loss of localization, with distributions

that have a classical form. However, we have not yet addressed the more interesting question

of whether the experimental data match the classical prediction in the presence of noise. An-

swering this question in a quantitative way requires a nontrivial amount of effort in carefully

modeling the experiment in order to make an accurate classical prediction for comparison with

the experimental data.

4.6.1 Classical Model of the Experiment

In order to facilitate an accurate comparison of the experimental data to the classical limit of

the kicked rotor, we have performed classical Monte Carlo simulations of the experiment. In
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these simulations, a large number (2 × 105) of classical trajectories were computed, each with

a distinct realization of amplitude noise; momentum distributions and ensemble energies were

then extracted from this set of trajectories. Additionally, we accounted for several different

systematic effects that were present in our experiment, in order to provide the best possible

classical baseline for comparison with the experimental data. In the remainder of this section

we describe in detail each of the systematic effects that we have accounted for and how we have

included them in the comparison of the data to theory.

The effects that we will describe in this section are illustrated in Fig. 4.12. This plot

compares the energy evolution for different cases where different corrections are accounted for.

As each correction is (cumulatively) taken into account, the resulting energy curve is lower and

less linear. Indeed, there is quite a large difference between the uncorrected, linear δ-kick curve

that one might expect to observe and the fully corrected curve. The importance of this rather
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Figure 4.12: Example of how the systematic effects described in the text can affect the mea-

sured energies. Shown are the simulated average energy evolution for typical operating pa-

rameters (K = 11.2, 100% noise level) and typical parameters for the systematic corrections.

The solid curve is the ideal case, corresponding to the δ-kicked rotor with no corrections; the
successively lower curves represent the cumulative result as each effect is accounted for (in

the order of presentation in the text): nonzero pulse duration (dashed), MOT (detection)

beam profile (long dot-dash), clipping due to width of CCD chip (dotted), profile of interac-

tion beam/transverse atomic motion (long dashes), correction for free-expansion measurement

(dot-dash), and vertical-offset bias (thin solid).
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technical discussion of experimental details is clear: without carefully taking into account these

systematic effects, one might mistakenly attribute curvature in the experimental energy data to

residual quantum localization effects. It is also important to emphasize that these effects cause

a reduction in the dynamic range of the experimental measurements, but they do not change

the underlying physics in a fundamental way. Finally, we note that most of these systematic

effects are such that it is either impractical or impossible to compensate for them with a simple

correction to the experimental data. In this sense, the “energies” that we use in our comparisons

are not true energies, but relatively complicated functions of the true energies and many other

experimental parameters. It is therefore the ability to take these effects into account in the clas-

sical simulations that allows for a meaningful quantitative comparison between our experiment

and classical theory.

The first, and perhaps most important, effect that we account for is the detailed pulse

shape f(t) of our kicks. The nonzero temporal width of the pulses leads to an effective re-

duction in the kick strength at higher momenta, as we discussed in Section 4.4.4, and so it is

important to accurately model the experimental pulses in order to reproduce the correct tails in

the momentum distributions. It turns out that our experimental pulses are well modeled by the

function

f(t) =
1

2ηerf

[
erf
(
(t − t1)

√
π

δt1

)
− erf

(
(t− t2)

√
π

δt2

)]
, (4.53)

where t2 − t1 = 295 ns is the full width at half maximum (FWHM) of the pulse, δt1 = 67 ns

is the rise time of the pulse (defined such that a straight line going from 0 to 100% of the pulse

height in time δt1 matches the slope of the rising edge at the half-maximum point), δt2 = 72 ns,

erf(x) :=
2√
π

∫ x
0

exp(−t2)dt (4.54)

is the error function, and ηerf is a normalization factor, which takes the value t2 − t1 for small

values of δt1,2/(t2 − t1). The function (4.53) is plotted along with a measured optical pulse in

Fig. 4.13. The rise and fall times in the pulse were mainly due to the response time of the switch-

ing AOM for the Ti:sapphire laser beam and the rise time of the SRS DS345 arbitrary-waveform

synthesizer that drives the AOM controller. It should be noted that although the agreement be-

tween the pulse model and the experimentally measured pulses is excellent, Eq. (4.53) is merely
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an empirical model of our observed pulse profiles. In the simulations, the classical equations of

motion were directly integrated, using Eq. (4.53) for the kick profile.

The next effect that we consider is due to the Gaussian profile of the optical molasses

laser beams. Recall that to measure momentum distributions, we imaged the light scattered by

the atoms from the molasses beams after a free-expansion time. Since the light was not uniform

over the atomic cloud, the scattering rate due to atoms with momentum p is given by

Rsc = N(p)
(
Γ
2

)
(I(x)/Isat)

1 + 4 (∆/Γ)2 + (I(x)/Isat)
, (4.55)

where N(p) is the number density of atoms with momentum p, I(x) is the local intensity

at spatial position x, Γ is the excited state decay rate, and Isat is the saturation intensity

(= 2.70 mW/cm2 for approximately isotropic pumping on the trapping transition). Also, in

the free expansion measurement, the unscaled variables x and p are related by

x = vr(p/�kL)tdrift , (4.56)

where vr = 3.5 mm/s is the velocity corresponding to a single photon recoil, and tdrift is the

free drift time of the momentum measurement. The spatial intensity profile of the six beams is
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Figure 4.13: Model function (4.53) for the experimental pulses (dashed line) compared to an

actual experimental pulse as measured on a fast photodiode (solid line). The two curves are

nearly indistinguishable.
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given by

I(x) = 2I0
[
e−2x

2/w 2
0 + 2e−(x

2+2z2)/w 2
0

]
, (4.57)

where I0 is the intensity at the center of one of the six beams, w0 = 11 mm is the beam-

radius parameter of the Gaussian beams, z is the vertical position of the atoms (transverse to

the standing wave, in the direction of gravity), the first term represents the two vertical beams,

and the last term represents the four horizontal beams, each at 45◦ to and in the horizontal

plane with the standing wave. To account for this effect, we applied a correction to the classical

simulation of the form

fmol(x) =
fI(x)

c2 + fI(x)
, (4.58)

where fI(x) = I(x)/2I0 is a scaled intensity profile, and c2 = [1 + 4(∆/Γ)2][Isat/(2I0)]. The

value of c2 was determined to be 5.94 by fitting the correction (4.58) to a known exponentially

localized distribution for various drift times; this value is in reasonable agreement with the ex-

pected value of c2 from the laser parameters.

The finite extent of our imaging CCD camera chip also had an impact on our measure-

ments. We set up our imaging system such that a typical localized distribution was just contained

within the imaged area after a 15 ms drift. For strongly noise-driven cases, though, the momen-

tum distribution could extend significantly past the edges of the imaged area. This effect had

little impact on the measured momentum distributions, since it only restricted the measurable

range of momentum. However, the energies computed from this momentum distribution are

sensitive to this truncation, even if the population in the truncated wings is small. The result is

a systematic reduction in the measured energy. It was straightforward to model this effect in the

simulations by rejecting trajectories that fall outside the experimental window.

Another effect that we accounted for is the transverse position of the atoms in the

standing-wave beams. Although the spatial size of the beam (with 1/e2 radius w0 = 1.5 mm)

was large compared to the size of the initial MOT cloud (σx = 0.15 mm), the variation in

kick strength over the atomic distribution must be accounted for, especially as the evolution

progresses and the atoms move further out transversely. Hence each atom sees an effective kick
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strength of Kmax exp[2(y(t)2 + z(t)2)/w2
0 ], where the transverse coordinates y and z are given

in scaled units by

y(t) = y0 + py0t
z(t) = z0 + pz0t− gt2/2 .

(4.59)

In these equations, we have used the scaled gravitational acceleration g, which is related to

the acceleration in physical units by g = 2kLT 2gphys. In the simulations, each particle was

given initial transverse positions y0 and z0 according to a Gaussian distribution that matched the

measured MOT size, and initial momenta py0 and pz0 that matched the momentum distribution

measured along the standing wave. It should be noted that this correction may actually increase

or decrease the final energies compared to an uncorrected simulation using the mean value of

K, even though the mean value of K effectively decreases with time. This is because a subset

of the atoms may completely dominate the diffusion if they are located more closely to one of

the maxima of D(K). For the beam waist/MOT size ratio used here, there is a spread in K of

around 5% in our initial distribution.

We additionally accounted for a systematic effect that occured in our free-expansion

measurement technique. This technique relied on allowing the atomic cloud to expand freely

for 15 ms after the interaction with the standing wave in order to convert the spatial distribu-

tion of the atoms into an effective momentum distribution. However, the interaction with the

standing wave lasted as long as 1.6 ms for these experiments. Since we define the drift time as

the time from the beginning of the standing-wave interaction to the beginning of the camera

exposure, the drift time effectively becomes smaller as the number of kicks in the experiment

increases. There is no simple way to directly correct for this effect, so we included this effect

in our simulations by simulating the free-expansion process. The initial spatial distribution was

chosen (in scaled units) to be uniform in the range [−π, π), which is extremely small compared

to the spatial distribution after the expansion. We did not choose the distribution from the

MOT spatial distribution to account for convolution effects; these effects have been approxi-

mately accounted for already, since the initial momentum distribution used in the simulations

is the measured momentum distribution, which was already convolved with the initial spatial

distribution. Then the effective momentum of each particle measured by the free-expansion
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method is given by

peff(t) = x(t) +
(
tdrift − t
tdrift

)
p(t) , (4.60)

where all quantities in this equation are scaled.

The final effect that we took into account was due to variations in the background lev-

els measured by the data acquisition (Princeton Instruments) camera. Although we performed

background subtraction, which greatly improved our signal-to-noise ratio, the offset levels after

the subtraction were generally nonzero, due to fluctuations (from drifts in the camera electron-

ics) and constant offsets (from physical effects in the imaging of the atomic cloud). To enhance

the reproducibility of our data, we used the following procedure to fix the zero level of our

measured distributions: the 40 lowest points (out of 510 total) in the distribution were aver-

aged together and defined to be the zero level. The disadvantage of this technique is that it

resulted in a slight negative bias in the offset level from the “true” distribution. For typical mea-

surements of localized distributions, the bulk of the distribution was contained well within the

imaged region. In these cases, the measured values near the edges of the imaged region were

small compared to those in the center of the distribution, and the error in the offset was neg-

ligible. However, for strongly noise-driven cases, a significant fraction of the distribution could

fall outside the imaged region, as noted above. In these cases, the lowest 40 values were then

significantly different from the true zero level, and our procedure introduced a significant bias.

It was straightforward to mimic this process in the simulations, but in some data sets it was pos-

sible to restore the correct offset level. For our typical studies of the transition from localized to

delocalized behavior, the only cases that were significantly biased are the strongly noise-driven

cases, which behaved essentially classically (as we will see later). Then one can assume that the

biased cases can be modeled as Gaussian distributions, with the MOT beam profile correction

applied to them, and obtain the correct offset by fitting the model function to the measured dis-

tribution. This ansatz was justified by the essentially perfect fit of the model function whenever

its use was appropriate. Using this idea, we implemented an automatic procedure for restor-

ing the correct offset in the data sets where the procedure was sensible (Figs. 4.15-4.20). In

other data (Fig. 4.14), such as measurements of exponentially localized distributions with very



138 Chapter 4. Localization and Decoherence in the Kicked Rotor

long localization lengths, such a procedure was clearly inappropriate, and this effect was instead

accounted for in the corresponding simulations.

There are a few other effects that we did not account for in the simulations, including

spontaneous emission, the stochastic dipole force, collisions between atoms, and other sources of

noise, most notably phase jitter in the standing wave (we have discussed all these effects in more

detail in Chapter 2). These effects cause decoherence, but they were sufficiently weak that at

low levels of applied amplitude noise, quantum effects were easily observed, and at high ampli-

tude noise levels, the applied noise dominated any effects that these other processes might have

had. Thus, these effects did not hinder our ability to study quantum-classical correspondence in

our system.

We also note that the corrections we have mentioned lend themselves well to classical

Monte Carlo simulations, whereas with other methods it would be quite cumbersome to take

the many aspects of the experiment into account. A similar, quantum-mechanical analysis is

much more difficult, however, as one would need to average over many wave packets in a Monte

Carlo approach to obtain good convergence, and the evolution for a single quantum wave packet

requires much more computation than for a single classical particle.

4.6.2 Data and Results

In this section we will explore a detailed experimental study of the quantum kicked rotor dynam-

ics in the presence of amplitude noise, using the classical model for comparison. An overview of

these results appears in Fig. 4.14, where the energies from the experiment and classical model

are shown as a function of the kick strengthK, for four different levels of amplitude noise. The

energies are plotted at the fixed time of 35 kicks. In the case of no applied noise, one can clearly

see the oscillations that correspond to Eqs. (4.24) and (4.47). Additionally, the shift in the lo-

cations of the experimental oscillations from their classical counterparts is evident; for the value

of k̄ = 2.08 used in all the experiments shown here, the shift is 20% above the classical value.

Although in some locations the quantum (experimentally observed) energies are larger than the

classical (numerically calculated) energies due to the shift of the oscillations, the experimen-
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Figure 4.14: Plot of the experimentally measured energy (points connected by solid lines) and

energy from the classical model (dashed line) as a function of the stochasticity parameterK, for
several different levels of applied amplitude noise. All the plotted energies are measured at the

fixed time of 35 kicks. The oscillations and the shift due to quantum effects, corresponding to

Eqs. (4.24) and (4.47) with k̄ = 2.08, are evident in the case with no applied noise. On average,
the experimental energies at the lower noise levels are smaller than their classical counterparts

due to localization effects. However, for the strongest noise level shown here (80%), there is
good agreement between the two energy curves. For this figure, no adjustments have been made

to the measured values of K, and the error bars for the energy values are suppressed, but are
typically smaller than the corresponding dots. Each experimental point is an average over 10
realizations of amplitude noise. Two arrows in the zero-noise case mark the locations of detailed

study that are described in the following two subsections.
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tal energies are smaller on average than the classical energies because of quantum localization

effects.

As the noise is added, the oscillations in the energy curves become washed out, as one

expects from Eqs. (4.29) and (4.49). Additionally, the difference between the experimental

and classical curves becomes less apparent, until the highest noise level (80%), where there is

excellent agreement between the two curves. In accordance with our previous discussion, good

correspondence only occurs when the noise level is sufficiently large to destroy the short-time

quantum and classical correlations, and hence the oscillations in the diffusion curves.

To fill out this picture of the kicked-rotor behavior, detailed views of the experimental

and classical dynamics at two values of K appear below. The two values of K in these de-

tailed measurements correspond to a minimum and a maximum of the quantum energy curve in

Fig. 4.14; these locations are indicated as arrows in the zero-noise plot in this figure. As we men-

tioned above, the dynamics are qualitatively different at these two locations. At the minima of

the experimental diffusion curve, exponential localization occurs. However, at the maxima, the

late-time distributions that we measured in our experiment are nonexponential; this behavior is

a fingerprint of the underlying classical anomalous diffusion.

In Figs. 4.15-4.20, we contrast the behavior of the experimental and classical systems at

these two values of K. The behaviors at small noise levels have several interesting differences,

but as we have already seen, the behavior at high noise levels is similar in that there is good

correspondence between the experiment and the classical simulations. In Figs. 4.15 and 4.18,

we see the behaviors of the energies at the minimum andmaximum of the experimental diffusion

curve, respectively, at a fixed time (50 kicks) as the level of noise varies. The time evolutions of

the energies are shown in Figs. 4.16 and 4.19 for the two values of K at various levels of noise.

Finally, the corresponding evolutions of the momentum distributions themselves are shown in

Figs. 4.17 and 4.20. We will discuss these results for the two values of K separately in the

following presentation.

Before proceeding, though, a few remarks are in order about the comparisons between

the experiment and the corresponding classical dynamics performed in this paper. The classical
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model contains many experimental parameters beyond the two that are really important for the

quantum kicked rotor dynamics (K and k̄). For the purposes of comparison, these extra param-

eters were not treated as fitting parameters; instead, they were all fixed to their experimentally

measured values. However, the stochasticity parameter K, which is by far the largest source

of uncertainty in the experiments, was sometimes adjusted by a few percent from its measured

value (but well within the experimental uncertainty of ±10%) in order to obtain better corre-

spondence. To be precise about these adjustments, the measured values of K are quoted in

each figure caption along with the value used in the classical simulations. Finally, as noted be-

fore, although statistical errors for our energy measurements are quoted in each figure, they are

of limited utility in determining the quality of the correspondence between the experimental

results and classical simulations. The main reason for this statement is the long-term optical

alignment and laser drifts that result in long-term drifts in K, which can result in local system-

atic shifts in energies between different curves (or even points within a curve) in each figure.

This effect is not properly accounted for by either the statistical error estimates or the simula-

tions, which used a single value ofK for an entire data set. For example, in Figs. 4.16 and 4.19, it

is not possible to distinguish different levels of agreement between the data and simulations for

the 60-200% noise levels, although some pairs of curves may appear to agree more closely than

others. Indeed, it is important to realize that the momentum distributions are the most reliable

tool for studying correspondence, since they contain much more information and tend to be less

sensitive to the problems we have mentioned. The energies, on the other hand, are still valuable

as a concise summary of the large amount of information presented here.

4.6.2.1 Detailed Study: Destruction of Exponential Localization

We now focus on the behavior at the minimum of the experimental diffusion curve, as indicated

by the rightmost arrow in Fig. 4.14. In this regime, the atoms localize in an exponential distribu-

tion at late times. In Fig. 4.15, there is a large difference between the experimental and classical

energies after 50 kicks when no noise is applied. This difference is due to both dynamical local-

ization and the misalignment of the quantum and classical diffusion oscillations, which gives the

classical system a larger initial diffusion rate. As noise is added, both the experimental data and
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the classical simulations exhibit increased diffusion, as the short-time correlations are washed

out. The increase in the experimental diffusion is larger than the classical diffusion because

quantum localization is destroyed. At high noise levels, the agreement between experiment and

classical simulation is good. Additionally, both curves exhibit a characteristic dip in the energy

around 150% noise levels. This somewhat surprising effect is a result of residual short-time cor-

relations, which persist at noise levels as high as 100%, where they enhance diffusion slightly

above the quasilinear value.

Similar behavior occurs in the time evolution of the energies shown in Fig. 4.16. When

there is no applied noise, the experimental energy grows initially more slowly than the classical

energy, and then saturates and diffuses slowly. As we noted before, this slow diffusion may be

due to residual decohering effects in our experiment, such as phase noise in the standing wave.

As noise is added, the diffusion is enhanced in both cases, and for high noise levels the energy
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Figure 4.15: Experimentally measured energy (points and solid lines) and energy from the classi-

cal model (dashed line) as the noise level is changed, for a fixed time (50 kicks) and stochasticity
parameter (the experimental value is K = 11.2± 10%, the classical simulation corresponds to
K = 10.9). At the lowest noise levels, there is a significant difference between the experimental
and classical energies, due to both localization and differences in short-term correlations, which

disappears for high noise levels. The error bars represent statistical scatter among the 18 noise
realizations comprised in each point, but do not account for long-term drifts or systematic un-

certainties (see note in text). The value of K used here corresponds to the rightmost arrow in

Fig. 4.14.
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Figure 4.16: Experimentally measured energy (points and solid lines) and energy from the classi-

cal model (dashed line) as a function of time, for various levels of applied noise. The experimen-

tally measured stochasticity parameter is K = 11.2 ± 10%, and the simulation corresponds to
K = 11.2. The experimental data points are averages over 15 distinct realizations of amplitude
noise, and data for successive noise levels are offset vertically by 200 for clarity. The agreement
between the experimental data and the classical model is excellent for noise levels of 60% and

above. The value ofK used here corresponds to the rightmost arrow in Fig. 4.14.
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growth in the experiment is quite similar to that observed in the simulations.

Finally, the transition to classical behavior in the experiment is most dramatically evi-

dent in the momentum distributions in Fig. 4.17. In the zero-noise case, the experimental distri-

bution evolves from the initial, nearly Gaussian form to the exponentially localized distribution

(shown in bold), which is characteristic of dynamical localization. The classical distribution,

on the other hand, evolves to the broader, Gaussian distribution that one expects from classical

physics. When a small amount of noise (20%) is applied, the final experimental distribution

is broader and has a rounded appearance, but is still quite far away from the classical Gaussian

distribution. With 40% noise, the final experimental distribution has made the transition to

a Gaussian profile, but the evolution still does not quite match that of the classical evolution.

For the highest levels of noise shown (60-200%), the evolutions of the experimental and classi-

cal distributions are nearly identical, providing strong evidence that the experiment is behaving

classically.

4.6.2.2 Detailed Study: Regime of Classical Anomalous Diffusion

We now focus on a different regime than in the last section. Here we consider the behavior at

a peak in the experimental diffusion curve, indicated by the leftmost arrow in Fig. 4.14. This

location in the diffusion curve corresponds to a regime of classical anomalous diffusion. As in

the previous case, there is a significant difference in the energy after 50 kicks in the absence of

noise, as seen in Fig. 4.18. The difference in this figure is much larger than in Fig. 4.14 because

of the much later time used in the plot (50 vs. 35 kicks). As noise is applied, the experimental

energy increases. This behavior is consistent with the breaking of localization, although it is not

completely clear that localization occurs in this regime, because of the nonexponential form of

the long-time momentum distributions. By contrast, the classical energy is initially reduced by

the applied noise, due to the destruction of the classical correlations. Again, for high noise levels

the behavior in the experiment is well described by the classical model.

From the evolution of the energies in Fig. 4.19, we see that the differences between the

behaviors of the atoms and the classical model are more subtle than in the case of the previous
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section. When there is no applied noise, the experimental data show a faster initial diffusion

than one would expect classically; at later times, the diffusion seems to saturate, suggesting that

localization effects are setting in, and the diffusion proceeds more slowly than in the classical

model. The energy difference in this case is smaller than one might expect from Fig. 4.18, due

to slight differences in the intensity and beam diameter of the kicking laser light between the

two data runs (notice that this value of K corresponds to a steeply sloped region in the classical

diffusion curve). As noise is added, the saturation is less pronounced, until the 40% noise level,

where the diffusion occurs more quickly than in the classical model, with little indication of

saturation. Above this level, the experiment agrees well with the classical model, and the short-

time correlations are evidently small.

The momentum distributions for this case are shown in Fig. 4.20. In the zero-noise case,

the experimental distribution after 70 kicks (highlighted in bold) has a characteristic profile,

180

200

220

240

260

280

0 50 100 150 200
noise level (%)

en
er

gy

  

(p
/2

hk
L
)2

/2

Figure 4.18: Experimentally measured energy (points and solid lines) and energy from the classi-

cal model (dashed line) as the noise level is changed, for a fixed time (50 kicks) and stochasticity
parameter (the experimental value is K = 8.4 ± 10%, the classical simulation corresponds to

K = 8.4). As in the case of Fig. 4.15, there is a large discrepancy between the experimental and
classical energies at the lowest noise levels, which disappears for high noise levels. Experimental

data are averaged over 18 realizations of noise. The value of K used here corresponds to the

leftmost arrow in Fig. 4.14. Note the larger discrepancy for zero noise in this figure, since the

time displayed here is later than that used in Fig. 4.14. Note also that the vertical scale used

here is magnified compared to that of Fig. 4.15.
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Figure 4.19: Experimentally measured energy (points and solid lines) and energy from the clas-

sical model (dashed line) as a function of time, for various levels of applied noise. The experi-

mentally measured stochasticity parameter isK = 8.4±10%, and the simulation corresponds to
K = 8.7. The experimental data points are averages over 15 distinct realizations of amplitude
noise, and data for successive noise levels are offset vertically by 200 for clarity. The agreement
between the experimental data and the classical model is again excellent for noise levels of 60%
and above. The value ofK used here corresponds to the leftmost arrow in Fig. 4.14.
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rounded and nonexponential in shape. One might be tempted to attribute this shape to the

systematic effects that we have discussed, which affect the tails of an exponential distribution

with a very long localization length. However, the region over which the distribution is rounded

is well within the domain where the systematic effects are not significant. The final classical

distribution also has tails that extend well beyond those of the experimental measurement. As

noise is introduced, the experimental profile becomes more Gaussian, and the classical diffusion

rate is reduced slightly. As in the previous section, the final experimental distribution for 40%

noise is Gaussian, but the evolution does not quite proceed at the same rate (as one can most

readily see from the distributions at intermediate times). The difference, though, is that the

quantum diffusion occurs more quickly than the classical expectation, whereas in the previous

section the diffusion occurred more slowly than in the classical model. Again, for the highest

levels of noise shown (60-200%), the experimental evolutions are in excellent agreement with

the classical model, and hence classical behavior is restored.

4.7 Comparison with a Universal Theory of Quantum Transport

Beyond examining the problem of quantum–classical correspondence, these experimental results

are also useful for studying details of quantum transport. Specifically, we can compare these

results with a recent quantum diffusion theory by Jianxin Zhong, Roberto Diener, Qian Niu, and

others [Zhong01]. This theory concerns the shape of the tails of a spreading quantum wave

packet, described by the stretched exponential function

P (x, t) ∼ exp(−|x/w|γ) , (4.61)

where w(t) is the time-dependent width parameter. The exponent γ here is stationary, and is

within the range [1,∞). This diffusion theory then relates this exponent to the scaling exponent

for the width parameter,

w(t) ∼ tβ , (4.62)

via the universal relation

γ = 1/(1− β) . (4.63)
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This relation is expected to hold for lattice-type models with Schrödinger equations of the form

i∂tψ(n, t) = V (n)ψ(n, t) +
∑
n′

h(n, n′)ψ(n′, t) , (4.64)

where ψ(n, t) is the amplitude at the nth lattice site, V (n) is the lattice-site potential energy,

and h(n, n′) is the “hopping integral,” which describes the couplings between the sites (for the

common “tight-binding” models, only nearest-neighbor sites are directly coupled). As we men-

tioned above, the kicked rotor can be written in this form, where the lattice describes the ladder

in momentum space, and so this spatial-diffusion picture describes the momentum transport in

the kicked rotor. This theory has been justified on the basis of numerical simulations in a variety

of systems, as well as a general theoretical argument based on a stationary-phase approximation

in the coarse-grained generalized master equation [Zhong01], and is valid asymptotically in the

tails of the distributions at long times.
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Figure 4.21: Comparison of the diffusion theory in Eqs. (4.61-4.63) to the experimental momen-

tum distribution evolution, for the exponentially localized case. The experimental distributions

forK = 11.2, k̄ = 2.08, and times of 30, 40, 50, 60, and 70 kicks are shown as solid lines, and the
simultaneous best fit to the tails of all the distributions is shown as dashed lines. The 70 kick
cases are highlighted in bold. The fitted exponents here are γ = 1.06±0.19 and β = 0.06±0.17,
in good agreement with the expectations for dynamical localization.
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This theory makes sense in several situations that we have already discussed, such as

exponential localization (γ = 1, β = 0), noise-induced (classical-like) diffusion (γ = 2, β =

1/2), and ballistic transport (γ → ∞, β → 1). What is more interesting, though, is that the

universal relation should also hold in the intermediate cases of “quantum anomalous diffusion.”

Since we have observed a case of quantum transport (the behavior at the peaks of the diffusion

curves, as in Fig. 4.11) that does not fall cleanly in any of the extreme cases, it is interesting to

use this theory to study this case.

To compare the theory with the experimental results, we have performed fits of the

distributions (4.61) to experimental distributions at 30, 40, 50, 60, and 70 kicks. To focus on

the asymptotic behavior, we excluded the data at the earlier times (0, 10, and 20 kicks), and the

center portions of the data (bounded by |p/2�kL| ∼ 15) were also excluded. The distributions
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Figure 4.22: Comparison of the diffusion theory in Eqs. (4.61-4.63) to the experimental mo-

mentum distribution evolution, for a case driven by 200% amplitude noise. The experimental

distributions forK = 11.2, k̄ = 2.08, and times of 30, 40, 50, 60, and 70 kicks are shown as solid
lines, and the simultaneous best fit to the tails of all the distributions is shown as dashed lines.

The 70 kick cases are highlighted in bold. The fitted exponents here are γ = 2.03± 0.14 and
β = 0.51± 0.03, consistent with normal (classical) diffusion.
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were likewise truncated outside |p/2�kL| ∼ 70 to exclude the regions of poor signal-to-noise ra-

tio that might have skewed the fits. All the distributions for a given case were fit simultaneously,

using a common fitting exponent γ. The scaling relation (4.62) was enforced by the constraint

w(t) = w0 + αtβ , (4.65)

where w0 and α are fitting parameters, and β was constrained by the relation (4.63). In the fit,

each distribution was convolved with the initial momentum distribution and then corrected for

the known response of the detection system (i.e., the nonuniformity of the Gaussian imaging

laser beams). To account for shot-to-shot variations in the backgrounds of the CCD camera pho-

tographs, it was necessary to include the vertical offsets and the amplitudes of the distributions

as fitting parameters. The fits were stabilized by constraining vertical offsets to a two-parameter

linear model and the amplitudes to a three-parameter quadratic model; these constraints were
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Figure 4.23: Comparison of the diffusion theory in Eqs. (4.61-4.63) to the experimental mo-

mentum distribution evolution, for the case influenced by classical anomalous transport. The

experimental distributions for K = 8.4, k̄ = 2.08, and times of 30, 40, 50, 60, and 70 kicks
are shown as solid lines, and the simultaneous best fit to the tails of all the distributions is

shown as dashed lines. The 70 kick cases are highlighted in bold. The fitted exponents here are
γ = 1.48± 0.16 and β = 0.32± 0.07, consistent with quantum anomalous diffusion.
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justified on physical grounds and on the basis of fits where these parameters were treated in-

dependently. The other effects discussed in Section 4.6.1 were not explicitly accounted for,

and thus influenced the vales of the fitted parameters. In order to emphasize the tails of the

distribution during the fit, the logarithms of the data were computed before being sent to the

Marquardt-Levenberg fitting routine. The uncertainties quoted here primarily reflect the sen-

sitivity of the fits to the choice of cutoff locations.

We have applied this fit to three sets of data. The first corresponds to exponential

localization (Fig. 4.21), where the fitted exponents were γ = 1.06± 0.19 and β = 0.06± 0.17.

These values are consistent with the expected values. The second case is the strongest case

(200%) of amplitude noise that we considered above (Fig. 4.22), where the fitted values of

γ = 2.03 ± 0.14 and β = 0.51 ± 0.03 are also consistent with the expected values for regular

diffusion. Finally, in the regime of classical anomalous diffusion (Fig. 4.23), the fitted values were

γ = 1.48± 0.16 and β = 0.32± 0.07, indicating intermediate behavior of quantum anomalous

diffusion. In all three cases, the tails of the experimental distributions match very well with the

fitted distributions.

4.8 Calculation of the Correlations

We will now run through the calculation of the correlations that we have used in this chapter.

These correlations were calculated using probabilistic methods [Rechester80], including an el-

egant path-summation method [Rechester81], but here we will follow the direct approach used

by Shepelyansky [Shepelyanskii82] for calculating the quantum correlations.

4.8.1 Classical Correlations

Beginning with the generalized standard map,

pn+1 = pn +Kn sinxn
qn+1 = qn + pn+1 ,

(4.66)

which allows for different kick strengths on each iteration, we wish to calculate the correlation

function

Cn := 〈K0 sinx0Kn sinxn〉, (4.67)
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where we will take the average over the initial distribution to be uniform over phase space. To

evaluate this function, we need to calculate the exponentials eixm of the iterated coordinates, in

view of the form

Cn = K0Kn
〈
eix0eixn − eix0e−ixn

〉
+ c.c. (4.68)

of the correlation functions.

We will proceed by calculating the first few correlations before generalizing to the arbi-

trary case. If we use the generating function for the Bessel functions Jn(x),

exp
[(
t− 1

t

)
z

2

]
=
∑
s

Js(z)tn , (4.69)

we can let t = exp(ix) and z = K to obtain

exp(iK sinx) =
∑
s

Js(K)eisx . (4.70)

This relation allows the evaluation of the first iterated exponential,

eix1 = exp[i(x0 + p0 +K0 sinx0)]

=
∑
s0

Js0(K0)ei(s0+1)x0eip0 .
(4.71)

We can iterate this procedure to obtain the next two exponentials. After reversing the order of

the indices, we obtain

eix2 =
∑
s0,s1

Js0 [K1]Js1[K0(s0 + 2)]ei(s1+s0+1)x0ei(s0+2)p0

eix3 =
∑
s0,s1,s2

Js0 [K2]Js1 [K1(s0 + 2)]Js2 [K0(2s0 + s1 + 3)]

× ei(s2+s1+s0+1)x0ei(2s0+s1+3)p0

(4.72)

At this stage the pattern of the iteration is apparent. We can define the recurrence relations

α0 = s0 + 1
αn+1 = αn + sn+1

(4.73)

and

β0 = 1 + α0
βn+1 = βn + αn ,

(4.74)
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and then write the nth iterated exponential as

eixn =
∑

s0···sn−1

Js0(Kn−1β0)Js1(Kn−2β1) · · ·Jsn−1 (K0βn−1)eiαn−1x0eiβn−1p0 . (4.75)

Now it is straightforward to evaluate the correlations (4.67), as the phase-space averages amount

to projections into a Fourier basis, with the general result

Cn =
K0Kn
2

∑
s0···sn−1

Js0(Kn−1β0)Js1(Kn−2β1) · · ·Jsn−1(K0βn−1)

× (δαn−1 ,1 − δαn−1,−1)δβn−1 ,0 ,

(4.76)

where δn,n′ is the Kronecker symbol. Thus, the first few correlations evaluate to

C0 =
K2

0

2

C1 = 0

C2 = −K0K2

2
J2(K1)

C3 =
K0K3

2
[
J3(K1)J3(K2)− J1(K1)J1(K2)

]
C4 =

K0K4

2
[
J2(K1)J2(K3) + O(K−3/2)

]
,

(4.77)

whereK is the statistical average of theKn. For the normal standard map,Kn = K for all n, and

inserting these correlations into Eq. (4.20), we recover the diffusion rate (4.24). On the other

hand, for amplitude noise, it is appropriate to average theKn over their probability distributions,

as in (4.28). Doing so, we recover the noise-modified diffusion result (4.29). Notice that for the

case of uniformly distributed amplitude noise, Eq. (4.29) can be integrated analytically, with the

somewhat unenlightening result,

D(K, δKp−p) =
K2

4
+
δK2

p−p
48

+
K2

2

{
− J2(K, δKp−p) + J 2

2 (K, δKp−p)

+
4

δKp−p

[
J2(K+)− J2(K−)

]2
− 4
δKp−p

[
J0(K+)− J0(K−)

][
J2(K+) − J2(K−)

]}
,

(4.78)
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where K± := K ± δKp−p/2,

J2(K, δKp−p) =
1

δKp−p

{
K+ J0(K+) −K− J0(K−)− 2

[
J1(K+)− J1(K−)

]
− π
2
[
J0(K+)H1(K+)− J1(K+)H0(K+)

]
+
π

2
[
J0(K−)H1(K−)− J1(K−)H0(K−)

]}
,

(4.79)

and the Hn(x) are the Struve functions of order n.

4.8.2 Quantum Correlations

The calculation of the quantum correlations follows along similar lines to the classical calcula-

tion, but is somewhat more complex. The derivation here follows the work of Shepelyansky

[Shepelyanskii82; Shepelyansky87]. The goal here is to calculate the (symmetrized) quantum

correlation function

Cq,n =
K0Kn
2

〈ψ0|(sinxn sinx0 + sinx0 sinxn)|ψ0〉 , (4.80)

which is averaged with respect to the initial state |ψ0〉. The coordinates xn and pn here are

Heisenberg-picture operators, which obey equations formally equivalent to the classical standard

map, as we have indicated above. The initial state is again approximately uniform over phase

space, so that

〈ψ0|eimx0einp0 |ψ0〉 = δm,0δn,0 . (4.81)

We begin as before, calculating the first iterated exponential

eix1 = ei(x0+p0+K0 sin x0) = exp
[
−p0 + ix0 +

K0

2
eix0 − K0

2
e−ix0

]
. (4.82)

To factor this exponential, we use two special cases of the Baker–Campbell–Hausdorff relation

[Wilcox67]. The first is

exp(A +B) = exp
(
B
ec − 1
c

)
exp(A) (4.83)

for operators A andB such that [A,B] = cB. The second case is

exp(A +B) = exp(A) exp(B) exp
(
−1
2
[A,B]

)
= exp(B) exp(A) exp

(
1
2
[A,B]

)
, (4.84)



4.8 Calculation of the Correlations 157

if [A, [A,B]] = [B, [A,B]] = 0. After factorization, the result is

eix1 = exp
(
i
2K0

k̄
sin(k̄/2) sin(x0 + k̄/2)

)
eix0eip0eik̄/2 . (4.85)

We can then apply the identity (4.70), with the result

eix1 =
∑
s0

Js0(Kq,0) exp
[
i
k̄

2
(s0 + 1)

]
ei(s0+1)x0eip0 , (4.86)

where Kq,0 := K0 sin(k̄/2)/(k̄/2). The general case is then obtained by iterating this relation

and then normally ordering the operators (i.e., so that all the p0 are on the right). Shepelyansky’s

result is

eixn =
∑

s0···sn−1

Js0(Kq,n−1β0)Js1(Kq,n−2β1) · · ·Jsn−1(Kq,0βn−1)eiγn1 eiαn−1x0eiβn−1p0 ,

(4.87)

where the functions αn and βn are defined as before, and we have defined an additional function

by the relations

γ0 =
k̄

2
(s0 + 1)

γn+1 = γn +
k̄

2
sn(αn + βn) +

k̄

2
α2n .

(4.88)

We can then define the function

R(n, r) :=
1
2
〈ψ0|[exp(−irx0) exp(ixn) + exp(ixn) exp(−irx0)]|ψ0〉

=
1
2

∑
s0···sn−1

Js0(Kq,n−1β0)Js1(Kq,n−2β1) · · ·Jsn−1(Kq,0βn−1)

× (1 + e−iβn−1 k̄q)eiγn1 δαn−1,q δβn−1,0 ,

(4.89)

in terms of which we can write the correlation function as

Cq,n =
K0Kn
4
[
R(n,−1)−R(n, 1)

]
+ c.c. . (4.90)
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The first few of these quantum correlations evaluate to

Cq,0 =
K2

0

2

Cq,1 = 0

Cq,2 = −K0K2

2
J2(Kq,1)

Cq,3 =
K0K3

2
[
J3(Kq,1)J3(Kq,2) − J1(Kq,1)J1(Kq,2)

]
Cq,4 =

K0K4

2
[
J2(Kq,1)J2(Kq,3) +O(K−3/2q )

]
,

(4.91)

Hence, we see that the first few quantum correlations have essentially the same form as the

classical correlations in Eqs. (4.77), but with the quantum scaling factor applied to the arguments

of the Bessel functions. The diffusion-rate results in the case of the normal quantum kicked rotor

(4.47) and the amplitude-noise case (4.49) then proceed as in the classical case.
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5.1 Overview

In this chapter we discuss several modifications to the experimental apparatus described in

Chapter 3. These improvements were necessary to prepare localized atomic wave packets in

phase space for the experiments in Chapter 6. The first step towards such localized initial

states is further cooling of the atoms beyond what is possible in a typical MOT. We accom-

plished this additional cooling in a three-dimensional, far-detuned optical lattice, as we discuss

in Section 5.2. Further velocity selection well below the recoil limit was accomplished using

two-photon, stimulated Raman transitions. We will examine the theory of stimulated Raman

transitions as well as their experimental implementation in Section 5.3. It was also necessary

to have control over the spatial phase of the optical lattice, so that the wave packet could be

shifted to various initial locations in phase space. This spatial control was accomplished through

an electro-optic phase modulator placed before the standing-wave retroreflector, as described

in Section 5.4. Finally, we trace through the entire state-preparation sequence, using all these

atom-optics tools, in Section 5.5, and we discuss the calibration of the optical-lattice potential

in the modified setup in Section 5.6.

5.2 Cooling in a Three-Dimensional Optical Lattice

Using the standard techniques of cooling and trapping in a MOT, as described in Chapter 3, we

were limited to temperatures on the order of 10 µK for the initial conditions of the experiment.

It is desirable, however, to have much lower temperatures for the initial conditions, especially

looking towards experiments with minimum-uncertainty wave packets in phase space. Although

it has been shown that temperatures below 3 µK can be achieved in cesium using a standard

six-beam MOT [Salomon90], our MOT temperatures were substantially higher due to residual

magnetic fields from eddy currents in the stainless steel vacuum chamber after the field coils

were switched off. One successful approach to achieving additional cooling beyond that of a

standard MOT is cooling in a three-dimensional optical lattice. Several methods for cooling in

three-dimensional optical lattices have been demonstrated [Kastberg95; Hamann98; Vuletić98;

Kerman00], but the method implemented here was based on the setup developed by the group
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of David Weiss [Winoto99a; Winoto99b; DePue99; Wolf00; Han01].

The 3D optical lattice was formed by five beams, as illustrated in Fig. 5.1. Three of

the beams were in the horizontal plane; two of these beams counterpropagate, and the third is

perpendicular to the other two. These beams formed a two-dimensional interference pattern,

consisting of a lattice of spots with maximum intensity. This pattern thus forms confining poten-

tial wells for red-detuned light, but not for blue-detuned light, where the intensity maxima form

scattering barriers for the atoms, resembling the Lorentz gas. The use of three beams for this

two-dimensional lattice is important, in that using the minimum number of beams to determine

a lattice ensures that the structure of the interference pattern will be stable to phase perturba-

tions [Grynberg93]. In the original implementation of this lattice [Winoto99b; DePue99], four

beams (in two counterpropagating pairs) were used to form the horizontal part of the lattice. Be-

cause the interference pattern could change its periodicity by a factor of two as the phase of one

of the beams varied, the authors in that experiment implemented interferometric stabilization

of the beam phases [Han01]. In the realization here, we simply omitted one of the four beams

to gain relatively easy stability at the expense of lattice intensity. The omission of one of the

Figure 5.1: Configuration of the beams forming the three-dimensional lattice for additional cool-

ing of the atoms. Five total beams form the lattice, and the directions of the linear polarizations

of each beam are indicated. Each of the beams is orthogonal to or counterpropagating with re-

spect to the other beams. The two vertical beams are decoupled from the three horizontal beams

by an 80MHz frequency shift. (Graphics rendered by W. H. Oskay.)
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beams was important in allowing long-term storage of the atoms in the lattice, as we describe

below, as well as repeatable atomic temperatures.

The other two beams in the 3D lattice counterpropagated in the vertical direction,

and they were approximately perpendicular to the three horizontal beams. These beams were

offset in frequency by 80MHz with respect to the horizontal beams. In this arrangement, the

interferences with the horizontal lattice oscillate on a time scale that is very fast compared to

atomic motion time scales, and thus it is appropriate to regard the vertical beams as decoupled

from the horizontal beams in terms of analyzing the interference pattern. Hence, the vertical

beams produced a normal 1D standing-wave lattice, which confined the atoms vertically, and the

three horizontal beams confined the atoms in the other two dimensions.

Cooling in 3D lattices proceeds by applying the usual MOT beams to the atoms in the

lattice. There are several mechanisms by which lattice cooling achieves much lower tempera-

tures than a standardMOT. The first mechanism is that of “adiabatic cooling” [Jessen96], where

the application of the lattice acts as an effective refrigerator cycle for cooling the atoms. When

the atoms are loaded into the lattice from the initial MOT, they are heated by the increasing po-

tential in order to gain local confinement in the lattice wells. Laser cooling by the MOT beams

proceeds as usual, cooling the atoms from the heated temperature back down to normal MOT

temperatures. When the lattice is then adiabatically shut off (together with the MOT beams),

the temperature is further lowered at the expense of local confinement, in which we are not

necessarily interested. An important feature of the lattice configuration implemented here is

that because all the light is linearly polarized and far-detuned, the magnetic (Zeeman) sublevels

all experience the same energy shift due to the light, and sub-Doppler cooling mechanisms that

rely on such degenerate level structure (polarization-gradient cooling [Dalibard89]) proceed as

in the free-MOT case. This mechanism was especially important for the setup here, as the

atoms could be stored in the lattice until after the magnetic fields decayed, allowing for much

better polarization-gradient cooling than we could achieve in the standard MOT. It was also im-

portant to extinguish the MOT beams adiabatically, as they likewise produced an optical lattice

due to the six-beam interference. The second mechanism for better cooling in the lattice relates



5.2 Cooling in a Three-Dimensional Optical Lattice 163

to suppression of the absorption of rescattered light in the MOT. The second-hand absorption

of photons that have already been spontaneously scattered by MOT atoms, or “radiation trap-

ping,” leads to temperature and density limitations in free-space MOTs [Sesko91; Ellinger94].

These rescattering events are particularly problematic in that they may be much more likely

to be absorbed than regular MOT photons, because their cross section for absorption is inde-

pendent of detuning due to the possibility of taking part in a two-photon stimulated scattering

event [Castin98; Wolf00]. In the festina lente regime [Castin98], however, where the photon

scattering rate (due to lattice photons, as we will mention below) is small compared to the trap

oscillation frequency (and thus the vibrational-level splitting), the recoil heating due to these

reabsorption events is suppressed [Castin98; Wolf00]. This is because most of the rescattered

photons in this regime are scattered elastically in the tight-confinement (Lamb-Dicke) limit,

and the probability of an atom changing its vibrational level by scattering such a rescattered pho-

ton is small. This suppression of rescatter heating is further enhanced by a third mechanism in

lattice cooling, where the cooling proceeds in analogy to a dark MOT [Ketterle93]. This mech-

anism obtains because the normal repumping light used in the regular MOT is extinguished

after the initial cooling phase in the lattice. Most of the atoms are thus in the dark (F = 3)

hyperfine level, and so the cooling light only affects a small fraction of the atoms at a given time.

The far-detuned lattice light provides slow repumping to the trapping transition. Thus, the life-

time for a given vibrational level is set by the scattering rate of optical-lattice light, and not the

near-resonant MOT light. Finally, cooling in the lattice has the additional benefit that atoms are

separated in individual lattice sites, and thus light-assisted collision losses and other collisional

effects are suppressed, resulting in a nearly density-independent cooling rate [Winoto99a].

For the realization here, the light was produced by the same Ti:sapphire laser that pro-

vided the 1D time-dependent interaction lattice. An 80MHz AOM picked off light for the 3D

lattice just before the similar pickoff AOM for the 1D lattice light. Another 80MHz AOM split

this beam into two parts, the first order (+80 MHz) having about 1/3 of the light, with the

remainder in the unshifted zeroth order. These two beams were spatially filtered by focusing

through 50 µm diameter pinholes. The upshifted light formed the vertical lattice beams, while
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the unshifted portion was further split in two with a half-wave plate and a polarizing beam-

splitter cube to form the horizontal beams. These three beams were all focused onto retrore-

flecting mirrors on the opposite sides of the chamber so that the beam waist w0 was 500 µm at

their intersection; one of the horizontal, retroreflected beams was blocked to form the five-beam

geometry described above. Each of the beams had approximately 90 mW of power. The lattice

had a typical detuning of 50 GHz to the red of the F = 3 −→ F ′ transition multiplet (or 40

GHz to the red of F = 4 −→ F ′), leading to an oscillation frequency in the vertical direction

of around 170 kHz (in the harmonic-oscillator approximation) and a scattering rate of around 1

kHz at beam center.

The procedure for lattice cooling began with about 5 s of loading the regular MOT from

the background vapor. The optical molasses light intensity was then lowered to 60% of the

loading value, and the detuning was increased to 37 MHz (from the 13 MHz used during the

loading phase). At the same time, the 3D lattice was turned on adiabatically to minimize the

heating of the atoms. The intensity followed the temporal profile I(t) = Imax(1 − t/τ )−2 (for

−800 µs < t < 0) [Kastberg95; DePue99], where the time constant τ was 30 µs. During this

lattice-loading phase, the anti-Helmholtz fields and repump light were both left on to encourage

rapid binding of the atoms to the 3D lattice. After a total of 22 ms in this loading phase, the

magnetic fields and repump light were extinguished, and the molasses light was raised back up

to 100% intensity. The 3D lattice was maintained at full intensity during the subsequent 298

ms storage time, but the molasses light was ramped linearly down to 77% intensity by the end

of this period. This long storage time was sufficient to allow the magnetic fields to decay mostly

away (to 70mG or better, when compensated properly by the Helmholtz coils), although a slowly

varying magnetic field was still detectable using the stimulated Raman spectroscopy described

below. Then the MOT and 3D lattice beams were ramped down adiabatically according to a

similar profile, I(t) = I0(1 + t/τ )−2 (with the same time constant), over 800 µs. The molasses

light began its ramping down about 20 µs before the 3D lattice beams, giving the optimum final

temperature.

This lattice-cooling procedure led to an atomic population in the F = 3 level with a 1D
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temperature (in the horizontal direction) of 400 nK, or σp/2�kL = 0.7. Between 50% and 90% of

the atoms remained trapped in the lattice during the cooling cycle, depending sensitively on how

well the lattice was aligned. The vertical temperature of 500 nK (σp/2�kL = 0.8) was somewhat

higher; the temperature could be mademore isotropic by changing the relative beam powers, but

at the expense of the horizontal temperature, which was the only important temperature for the

experiments here. The lattice worked well over detunings of 25-70 GHz (from F = 3 −→ F ′);

for closer detunings the final temperature began to rise, and at larger detunings, the fraction

retained in the lattice dropped off.

For some experiments, it was necessary to prepare the atoms in the F = 4 hyperfine

level. This could be conveniently achieved by pulsing on the repumping light for 100 µs af-

ter the lattice and molasses fields were extinguished, at the expense of temperature (the final

temperature was typically 700 nK after repumping). To implement stimulated Raman velocity

selection, as we discuss in the next section, further optical pumping to the F = 4, mF = 0

Zeeman sublevel was necessary, as we discuss in Section 5.3.5.

5.3 Stimulated Raman Velocity Selection

Now we consider the implementation of two-photon, stimulated Raman transitions in cesium

for subrecoil (i.e., smaller than the single-photon momentum) velocity selection. After giving a

general overview of the theory behind stimulated Raman transitions and velocity selection, we

will give the details of our implementation as well as a discussion of optical pumping and internal

state selection necessary for a clean velocity-selection method.

5.3.1 Stimulated Raman Transitions: General Theory

We consider the atomic energy level structure shown in Fig. 5.2, where two ground states |g1,2〉

are coupled to a manifold of excited states |en〉 by two optical fields. Our goal is to show that

under suitable conditions, the atomic population can be driven between the ground states as

in a two-level system. We restrict our attention to the case where the fields propagate along a
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common axis. In the counterpropagating case, the combined optical field has the form

E(x, t) = ε̂1E01 cos(k1x− ωL1t) + ε̂2E02 cos(k2x+ ωL2t)

= E(+)(x, t) + E(−)(x, t) ,
(5.1)

where E(±)(x, t) are the positive and negative rotating components of the field, given by

E(±)
1 (x, t) =

1
2
(
ε̂1E01e

±ik1xe∓iωL1t + ε̂2E02e
∓ik2xe∓iωL2t

)
, (5.2)

and ε̂1,2 are the unit polarization vectors of the two fields. The results that we will derive also

apply to the copropagating case as well upon the substitution k2 → −k2.

The free atomic Hamiltonian can then be written

HA =
p2

2m
+ �ωg1 |g1〉〈g1|+ �ωg2 |g2〉〈g2|+

∑
n

�ωen |en〉〈en| , (5.3)

and the atom-field interaction Hamiltonian is

HAF = −d(+) ·E(−) − d(−) · E(+) , (5.4)

where we havemade the rotating-wave approximation, we have assumed that ω21 := ωg2−ωg1 �

ωegj
:= max{ωen}−ωgj , and we have in mind that the |en〉 are nearly degenerate. Additionally,
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Figure 5.2: Energy level diagram for stimulated Raman transitions. Each ground level |gj〉 is
coupled to the excited-state manifold |en〉 via two laser fields, which are tuned so that their

detunings from the excited-state manifold are nearly the same.
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we have decomposed the dipole operator d into its positive- and negative-rotating components,

d = d(+) + d(−)

=
∑
n

(
a1n〈en|d|g1〉 + a2n〈en|d|g2〉

)
+
∑
n

(
a†1n〈en|d|g1〉 + a

†
2n〈en |d|g2〉

)
,

(5.5)

where ajn := |gj〉〈en| is an annihilation operator. Substituting (5.5) into (5.4), we find

HAF = −
∑
n

1
2
〈en|ε̂1 · d|g1〉E01

(
a1ne

ik1xe−iωL1t + a†1ne
−ik1xeiωL1t

)
−
∑
n

1
2
〈en|ε̂2 · d|g2〉E02

(
a1ne

−ik2xe−iωL2t + a†2ne
ik2xeiωL2t

)
.

(5.6)

In writing this expression, we have assumed the detunings ∆Lj := ωLj − ωegj
are nearly equal;

hence, to make this problem more tractable, we assume that the field Ej couples only |gj〉 to

the |en〉. After solving this problem we will treat the cross-couplings as a perturbation to our

solutions. If we define the Rabi frequency

Ωjkn :=
−〈en |ε̂k · d|gj〉E0k

�
, (5.7)

which describes strength of the coupling from level |gj〉 through field Ek to level |en〉, we arrive

at

HAF =
∑
n

�Ω11n

2
(
a1ne

ik1xe−iωL1t + a†1ne
−ik1xeiωL1t

)
+
∑
n

�Ω22n

2
(
a1ne

−ik2xe−iωL2t + a†2ne
ik2xeiωL2t

) (5.8)

as a slightly more compact form for the interaction Hamiltonian.

Now, before examining the equations of motion, we transform the ground states into

the rotating frame of the laser field, as in Chapter 2:

|g̃j〉 := e−iωLjt|gj〉

Ẽ
(±)
k := e±iωLktE

(±)
k .

(5.9)

Also, for concreteness, we will take max{ωen} = 0. Then the rotating-frame, free-atom Hamil-

tonian is

H̃A =
p2

2m
+ �∆L1|g̃1〉〈g̃1|+ �∆L2|g̃2〉〈g̃2|+

∑
n

�δen |en〉〈en| , (5.10)
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where δen := ωen −max{ωen} (i.e., δen ≤ 0). The interaction Hamiltonian in the rotating frame

is

H̃AF = −d̃(+) · Ẽ(−) − d̃(−) · Ẽ(+)

=
∑
n

�Ω11n

2
(
ã1ne

ik1x + ã†1ne
−ik1x

)
+
∑
n

�Ω22n

2
(
ã1ne

−ik2x + ã†2ne
ik2x
)
,

(5.11)

where the annihilation operator ãjn is defined in the same way as ajn, but with |gj〉 replaced by

|g̃j〉.

Turning to the equations of motion, we will manifestly neglect spontaneous emission,

since ∆Lj � Γ, where Γ is the decay rate of |en〉, by using a Schrödinger-equation description

of the atomic evolution. Then we have

i�∂t|ψ〉 = (H̃A + H̃AF)|ψ〉 , (5.12)

where the state vector can be factored into external and internal components as

|ψ〉 = |ψg1〉|g̃1〉+ |ψg2〉|g̃2〉 +
∑
n

|ψen〉|en〉 . (5.13)

Then if ψα(x, t) := 〈x|ψα〉, we obtain the equations of motion

i�∂tψen =
p2

2m
ψen +

�Ω11n

2
e−ik1xψg1 +

�Ω22n

2
eik2xψg2 + �(δen −∆L)ψen

i�∂tψg1 =
p2

2m
ψg1 +

∑
n

�Ω11n

2
eik1xψen + �(∆L1 −∆L)ψg1

i�∂tψg2 =
p2

2m
ψg2 +

∑
n

�Ω22n

2
e−ik2xψen + �(∆L2 −∆L)ψg2 ,

(5.14)

where we have boosted all energies by −�∆L, with ∆L := (∆L1 + ∆L2)/2 (i.e., we applied an

overall phase of ei∆Lt to the state vector). Since we assume that |δen | � |∆L| and |∆L2−∆L1| �

|∆L|, it is clear that the ψen carry the fast time dependence at frequencies of order |∆L| � Γ.

We are interested in motion on timescales slow compared to 1/Γ, and the fast oscillations are

damped by coupling to the vacuum on timescales of 1/Γ, so we can adiabatically eliminate the

ψen by making the approximation that they damp to equilibrium instantaneously (∂tψen = 0).

Also, we use p2/2m� �|∆L|, with the result,

ψen =
Ω11n

2(∆L − δen)
e−ik1xψg1 +

Ω22n

2(∆L − δen)
eik2xψg2 . (5.15)
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Notice that in deriving this relation, it was important to choose the proper energy shift −�∆L to

minimize the natural rotation of the states that remain after the adiabatic elimination; indeed,

if the resonance condition that we will derive is satisfied, the two ground states have no natural

oscillatory time dependence. This procedure would be much more clear in a density-matrix

treatment (as in Section 2.4.1), where the oscillating coherences would be eliminated, but this

description is cumbersome due to the number of energy levels in the problem. Using this relation

in the remaining equations of motion, we obtain two coupled equations of motion for the ground

states,

i�∂tψg1 =
p2

2m
ψg1 +

[
�∆L1 + �ωAC1

]
ψg1 +

�ΩR

2
ei(k1+k2)xψg2

i�∂tψg2 =
p2

2m
ψg2 +

[
�∆L2 + �ωAC2

]
ψg2 +

�ΩR

2
e−i(k1+k2)xψg1 ,

(5.16)

where we have removed the energy shift of −�∆L. These equations are formally equivalent to

the equations of motion for a two level atom, with Rabi frequency

ΩR :=
∑
n

Ω11nΩ22n

2(∆L − δen)
(5.17)

and Stark shifts

ωACj :=
∑
n

Ω2
jjn

4(∆L − δen)
. (5.18)

These equations of motion are just the equations generated by the effective RamanHamiltonian

HR =
p2

2m
+ �(∆L1 + ωAC1)|g̃1〉〈g̃1|+ �(∆L2 + ωAC2)|g̃2〉〈g̃2|

+ �ΩR

(
aRe

i(k1+k2)x + a†Re−i(k1+k2)x
)
,

(5.19)

where the Raman annihilation operator is defined as aR := |g1〉〈g2|. Noting that the oper-

ator exp(−ikx) is a momentum-shift operator, so that exp(−ikx)|p〉 = |p − �k〉 (and thus

exp(−ikx)ψ(p) = ψ(p + �k), where ψ(p) := 〈p|ψ〉), it is clear from the form of the effec-

tive RamanHamiltonian that a transition from |g2〉 to |g1〉 is accompanied by a kick to the left of

two photon-recoil momenta, and the reverse transition is accompanied by a kick to the right of

two photon recoils. We can write out the coupled equations of motion due to the Hamiltonian
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(5.19) more explicitly as

i�∂tψg1(p) =
[
p2

2m
+ �∆L1 + �ωAC1

]
ψg1(p) +

�ΩR

2
ψg2(p + 2�kL)

i�∂tψg2(p+ 2�kL) =
[
(p + 2�kL)2

2m
+ �∆L2 + �ωAC2

]
ψg2(p+ 2�kL) +

�ΩR

2
ψg1(p) ,

(5.20)

where 2kL := k1 + k2 . The resonance condition for this transition |p〉|g1〉 −→ |p+2�kL〉|g2〉 is[
(p+ �kL)2

2m�
+∆L2 + ωAC2

]
−
[
p2

2m�
+∆L1 + ωAC1

]
= 0 , (5.21)

which can be rewritten as

4ωr

(
p + �kL

�kL

)
+ (∆L2 −∆L1) + (ωAC2 − ωAC1) = 0 . (5.22)

Here, we have defined the recoil frequency as before by ωr := �k2L/2m = 2π · 2.0663 kHz for

the cesium D2 transition. The first term is just the Doppler shift of the two optical fields due

to motion at the average of the upper and lower state momenta. In the copropagating case, this

term is typically negligible.

Finally, we account for the effects of the cross-couplings that we previously ignored.

The lifetimes of the two ground states are in practice extremely long, so that the line width of

the Raman transition is quite narrow, being limited only by the finite interaction time. Since it

is assumed that the Raman resonance condition (5.21) is approximately true, the Raman cross-

coupling is much further away from resonance than the intended coupling (typically several

orders of magnitude in cesium), so this extra Raman coupling can be neglected in a secondary

rotating-wave approximation. However, the cross-couplings can induce additional ac Stark shifts

of the ground levels. So, we simply modify (5.18) to include these extra shifts:

ωAC1 :=
∑
n

Ω2
11n

4(∆L − δen)
+
∑
n

Ω2
12n

4(∆L − δen − ω21)

ωAC2 :=
∑
n

Ω2
22n

4(∆L − δen)
+
∑
n

Ω2
21n

4(∆L − δen + ω21)
.

(5.23)

These additional Stark shifts may not in general be negligible compared to the original Stark

shifts.
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We can also obtain an estimate of the spontaneous emission rate by using (5.15) to write

the total excited state population in terms of the density matrix elements:

Rsc = Γ
∑
n

ρenen

=
∑
n

ΓΩ2
11n

4(∆L − δen)2
ρg1g1 +

∑
n

ΓΩ2
22n

4(∆L − δen)2
ρg2g2

+
∑
n

ΓΩ11nΩ22n

4(∆L − δen)2
e−i2kLxρg1g2 +

∑
n

ΓΩ11nΩ22n

4(∆L − δen)2
ei2kLxρg2g1 .

(5.24)

Here, ραα is the population in state |α〉, with ρg1g1 + ρg2g2 � 1, and this result assumes im-

plicitly that ∆L1 ≈ ∆L2. The second two terms represent an enhancement or suppression of

spontaneous scattering due to atomic coherences; for example, the state

|ψ〉 = η(Ω22ne
ikLx|ψg1〉 − Ω11ne

−ikLx|ψg2〉) (5.25)

(where η is the appropriate normalization factor) is dark, since Rsc vanishes for this state. How-

ever, this state is only dark if the cross-couplings can be ignored. More realistically, the scattering

rate can be modeled as an incoherent sum over all the couplings of the form (ΓΩ2/4∆2)ρgjgj ,

including other fields that are not directly involved in the Raman transition (such as the EOM

carrier field, discussed in Section 5.3.3).

5.3.2 Pulse-Shape Considerations

Since the velocity-selective Raman pulses are generally used to “tag” a subset of an atomic dis-

tribution according to their momentum, it is important to consider the impact of the temporal

pulse profile on the tagged distribution. The simplest pulse profile is the square profile, where

the light is turned on at a constant intensity for some duration. Assuming that the atoms are

all initially in the same internal atomic state, the tagging process is described by the solution of

the optical Bloch equations for the excited state population of a two-level atom with Rabi fre-

quency ΩR, Raman detuning ∆R (given by the left-hand side of Eq. (5.22)), and with all initial

population in the ground Raman state:

ρee(t) =
Ω2

R

Ω2
R +∆2

R

sin2
(
1
2

√
(Ω2

R +∆2
R) t
)
. (5.26)
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From Eq. (5.22), we see that a detuning of ∆R = 4ωr corresponds to a momentum shift of

�kL. This lineshape has wings that decay relatively slowly, with a series of locations where the

lineshape goes to zero. The locations of the zeros for an interaction time of δt is given by

∆R =

√
4n2π2

(δt)2
− Ω2

R (5.27)

for positive integer n. This relation simplifies for specific interaction times; for example, for a

“π-pulse” of duration δt = π/ΩR, the locations are at ∆R = ΩR

√
4n2 − 1, and for a π/2-pulse

of duration δt = π/(2ΩR), the locations are ∆R = ΩR

√
16n2 − 1. These zeros were important

in a previous implementation of Raman cooling [Reichel95; Reichel96], where the first zero of

the profile (5.26) was placed at zero momentum to form a dark interval where atoms would

accumulate. The square-pulse excitation lineshape is plotted in Fig. 5.3 for a π/2-pulse, a π-

pulse, and a 2π-pulse. Note that for the important case of the π-pulse, the central population

lobe is characterized by a half width at half maximum of 0.799 ·Ω.

It is also important to note that because one typically excites a range of detunings with
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Figure 5.3: Plot of Eq. (5.26), showing excited state population as a function of the detuning

from resonance, for three pulse durations: π/2-pulse, corresponding to an interaction time of

δt = π/(2ΩR), (solid line); a π-pulse, corresponding to δt = π/ΩR (dotted line); and a 2π-
pulse, for δt = 2π/ΩR (dashed line).
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a velocity-selective Raman pulse, the transferred population does not undergo simple sinusoidal

Rabi oscillations. For a square pulse, the excitation profile (5.26) must be averaged over the

atomic velocity distribution. In the limit of a broad velocity distribution, the excited population

is proportional to∫ ∞
−∞
ρee(t)d∆R =

πΩR

2
Ji0(ΩRt)

=
πΩ2

Rt

2

{
J0(ΩRt) +

π

2
[J1(ΩRt)H0(ΩRt)− J0(ΩRt)H1(ΩRt)]

}
,

(5.28)

where the Jn(x) are ordinary Bessel functions, the Hn(x) are Struve functions, and Jin(x) :=∫ x
0
Jn(x′)dx′. The population in this case still oscillates as a function of time, but with some

damping. This function is plotted in Fig. 5.4. Notice that for short times, the function (5.28)

reduces to (π/2)Ω2
Rt+O(t

2), so that one can associate a nonzero transition rate, proportional to

Ω2
R (which is in turn proportional to the product of the laser intensities), as long as ΩRt� 1.

An alternative approach, based on the Blackman pulse profile, was used by the Chu

group for Raman cooling [Kasevich92a; Davidson94]. This profile, when normalized to have unit
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Figure 5.4: Plot of Eq. (5.28), showing excited state population evolution resulting from a square,

velocity-selective Raman pulse in a broad atomic velocity distribution. The location of the first

minimum is determined by the second zero of J0(x), which is at ΩRt ≈ 0.879 · 2π.
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area, can be written as

fB(t) =
1

0.42τ
[−0.5 cos(2πt/τ ) + 0.08 cos(4πt/τ ) + 0.42] , (5.29)

where τ is the duration (support) of the pulse. The Blackman profile has the property that the

tails in the Fourier spectrum are suppressed relative to the square pulse. Hence, the Raman

excitation spectrum of the Blackman pulse falls off much more sharply than the corresponding

square-pulse spectrum, as shown in Fig. 5.5. However, the implementation of Blackman pulses

in a setup where the Raman beams induce an ac Stark shift of the transition is more compli-

cated, since the Raman frequency must be chirped to match the Stark shift in order to get good

frequency resolution. (For an 800 µs, square π-pulse, the Raman transition was Stark shifted by

around−2 kHz in this setup, which is larger than the 500Hz effective half-width of the selected

momentum group.) Due to the frequency stability issues of the RF electronics discussed below,

the experiments in this dissertation used only square Raman pulses.
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Figure 5.5: Plot of the excitation profile for a Blackman pulse (solid line) and for a square pulse

(dotted line). Both pulses are π-pulses and have the same total temporal duration (and hence
the same average Rabi frequency Ω̄R).
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5.3.3 Implementation of Stimulated Raman Transitions

The basic hardware setup for implementing stimulated Raman transitions is shown in Fig. 5.6.

The Ti:sapphire laser that provided the light for the 1D and 3D optical lattices also provided

the light to drive the Raman transitions. A 40 MHz AOM, placed after the two AOMs for the

optical lattices and before the wave meter and Fabry-Perot cavity, was used to to pick off the

Raman light from the main Ti:sapphire beam line.

The method used to generate the two laser frequencies to drive cesium Raman transi-

tions is similar to the implementation in [Kasevich92b]. The first-order beam from the Raman

AOM was split into two components by a 50% beam splitter (or more precisely, a half-wave

plate with a polarizing beam-splitter cube). One of the split beams was sent through a New

Focus model 4851, 9.28 GHz electro-optic phase modulator (EOM), which put sidebands at

±9.28 GHz on the beam. The driving signal was derived from the 10 MHz output of a highly

From
Ti:sapphire

40 MHz
AOM

9.28 GHz EOM 44 MHz
AOM

44 MHz
AOM

l/4

l/4

insert mirror and beamsplitter
for copropagating mode

(AOMs have common source
at 43.684115MHz + d, and are
indepedently switchable; they
shift the light frequency in

opposite directions.
d = 0 corresponds to resonance
in the absence of Doppler or
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Figure 5.6: Optical layout for implementing stimulated Raman transitions with a high-frequency

electro-optic modulator (EOM). The EOM put 9.28GHz sidebands on the carrier frequency νc,
and the counterpropagating beam was shifted up or down in frequency by one of two acousto-

optic modulators (AOMs), depending on the desired direction of the photon momentum trans-

fer. An extra mirror and beam splitter could be inserted on kinematic mounts to convert the

system to copropagating mode.
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stable and accurate EFRATOM LPRO rubidium oscillator, which was quadrupled in frequency

and then converted to 9.28 GHz by a Delphi Components, Inc. dielectric resonant oscillator

(DRO). The DRO output was amplified by a QuinStar Technology, Inc. model CPA09092535-1

solid state amplifier, which was specified to have 25 dB of gain (with 35 dBm maximum output

power) at 9.28 GHz. The amplifier output was protected by a Sierra Microwave Technology

model SMC-8010 microwave circulator, so that any back-reflections would be terminated into a

50 Ω resistive load rather than the amplifier output port. The signal was transferred to the phase

modulator through a 1 m long, Times Microwave Systems LMR-400 cable, which has low loss

at 9.28 GHz compared to standard semirigid (RG-402) coaxial wire. The EOM converted about

7% of the carrier into each of the sidebands. The beam was then spatially filtered by focusing

through a 40 µm pinhole, converted to circular polarization by a zero-order half-wave plate, and

sent into the chamber. This (collimated) beam had a waist parameter w0 of around 2 mm as it

entered the chamber.

The other beam propagated through two 44MHz tunable AOMs. These AOMswere ar-

ranged in a double-pass configuration, with one double-passing the +1 order and the other using

the −1 order. With this arrangement the output beam could be shifted by ±88MHz depending

on which AOM was switched on, with some tunability. The output of the double-pass configura-

cn

n + 9.28 GHzc

n + 87.36823 MHz + 2dc

n + 9.28 GHzc

n - 9.28 GHzc

n - 87.36823 MHz - 2dc

n - 9.28 GHzc

cn

(a) (b)

F = 3

F = 4

F = 3

F = 4

Figure 5.7: Energy-level scheme in cesium for the optical setup in Fig. 5.6. The configuration

shown in (a) is for the case when one of the double-passed AOMs shifted the light up by 87

MHz, while case (b) is for the case where the light was shifted down by 87 MHz.
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tion was also sent into the vacuum chamber after spatial filtering through a 35 µm pinhole. This

beam also had a waist parameter w0 of around 2 mm in the chamber, and was likewise circularly

polarized after passing through a zero-order half-wave plate. The two beams propagated along

nearly the same axis as the 1D lattice (with about 1◦ of horizontal angular separation), to give

velocity selectivity in the dimension of interest. The idea behind this arrangement is that the

AOM-shifted light and one of the sidebands on the other beam provide the two frequencies to

drive the Raman transition. The AOM frequency shift was important to decouple all other pairs

of light, so that the other EOM sideband and the EOM carrier had no influence on the atoms

besides a Stark shift and some additional spontaneous scattering. The shift was particularly im-

portant in decoupling the carrier, which in velocity-selective mode would form a standing wave

with the counterpropagating beam. With the frequency shift, this standing wave moved far too

quickly (∼104 photon recoils) to have any effect on the atomic motion. Since the ground-state

splitting ω21 is exactly 2π · 9.192 631 770 GHz, driving the AOMs at 43.684 115 MHz (which

induces a shift of ± 87.368 230 MHz) put the Raman transition directly on resonance in the

absence of Stark, magnetic, or Doppler shifts.

The tunable RF signal that drove the AOMs needed to be extremely stable, and thus

was derived from synthesized signal generators. In the original setup, the signal from a Fluke

6080A/AN synthesizer, operating at 150MHz, was doubled in frequency by a Mini-Circuits FK-

5 doubler. Since the synthesizer had an analog frequency-modulation (FM) input which could

change the frequency by up to ±1 MHz, the doubler effectively increased the “throw” of the

synthesizer to ±2 MHz. The analog FM input was controlled by a Stanford Research Systems

DS345 arbitrary waveform synthesizer, connected by a double-shielded coaxial cable to reduce

noise contamination on the FM signal. The doubled signal was mixed by a Mini-Circuits ZP-

3LHmixer with the output of a WaveTekmodel 2047 synthesizer, which operated at about 343.7

MHz, to obtain the difference frequency at 43.7 MHz. The mixer output was then amplified

by an IntraAction model PA-4 power amplifier and then fed into the appropriate AOM. The

synthesizers were both slaved to the Rb oscillator mentioned above for extremely good accuracy

and stability, but the analog input of the Fluke unit caused the output frequency to have long-
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term drifts (over the course of a day) at the kHz level, which is at the same level as the Fourier

width of the Raman selection pulse. Hence, this setup was not suitable for a reliable Raman

velocity selection solution, and so the Fluke unit was replaced by a Hewlett-Packard model

8662A synthesizer. The HP unit was much more stable, having drifts at the 100 Hz level over

the course of a day, but also had a much smaller FM range of±25 kHz. So, the HP unit was more

useful for Raman velocity selection, while the Fluke unit was more useful for wide-range sweeps

(e.g., while looking for Raman signals initially or beginning to null out magnetic fields). It was

also useful to have rapid control of the Raman detuning to chirp the detuning during a pulse,

which improved the quality of the spectra in coarse spectral sweeps. For the Raman velocity

selection in the state-preparation sequence described below, the FM input on the HP unit was

disabled, and the Raman detuning was set by programming the HP unit via the GPIB interface.

In this mode, where the FM input was deselected, the RF system had extremely good frequency

stability, with a drift at the level of 1 Hz/day.

This configuration allows for two distinct possibilities for driving Raman transitions.

When the two beams are counterpropagating, the Raman transitions are velocity-selective, as

we argued in the previous section. By choosing which way the double-passed beams are shifted,

one also chooses the direction of momentum that the beams impart to the atoms. This idea is

illustrated in Fig. 5.7, which shows the optical frequencies in the context of the energy levels of

cesium. When the double-passed beam is shifted up in frequency, it drives the F = 4 −→ F ′

part of the transition, while the upper sideband on the EOM beam drives the F = 3 −→ F ′

part. The lower sideband and the carrier are too far away from resonance to have a significant

effect. When the double-passed beam is shifted to the red, however, as in Fig. 5.7(b), the double-

passed beam drives the F = 3 −→ F ′ part of the Raman transition, while the lower sideband

of the EOM beam drives the F = 4 −→ F ′ part. The mutual detuning of the Raman beams

from resonance is now effectively 9 GHz larger, but the imparted momentum for a given Raman

transition is in the opposite direction. For the F = 3 −→ F = 4 Raman transition, the case of

Fig. 5.7(a) corresponds to a leftward kick in Fig. 5.6, while the case of Fig. 5.7(b) corresponds

to a rightward kick. This dual-AOM arrangement is useful for an implementation of stimulated
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Raman cooling, as we discuss briefly below, although for the experiments in this dissertation,

we only used one of the AOMs (inducing a positive frequency shift) to drive velocity-selective

transitions.

This setup could also be operated in copropagatingmode by inserting a mirror to deflect

the phase-modulated beam after the spatial filter and inserting a 50% non-polarizing cube beam

splitter to combine the two beams with the same polarization. This configuration was useful for

nulling the background magnetic fields, as these Raman transitions are much more efficient than

in the counterpropagating case (since atomsmoving at all velocities can still undergo transitions),

and the only energy shifts are Stark and Zeeman shifts. By minimizing the splittings between

the resonances due to these copropagating-mode transitions, we could null the background fields

to about 10mG, although we tolerated background fields at the 70mG level because of long-term

drifts in the field-control electronics.

5.3.4 Optical Pushing and Hyperfine State Detection

With this setup, it is possible to drive Raman transitions in cesium, but it is still necessary to

have a measurement scheme to detect the internal state populations. Beginning with cooling in

the 3D optical lattice, the atoms were cooled in the F = 3 ground hyperfine level. As discussed

above, a brief repumping pulse transferred the atoms to the F = 4 level. At this point we could

drive Raman transitions back to the F = 3 level. To detect the population transferred by the

Raman process, we turned on a beam resonant with the F = 4 −→ F ′ = 5 cycling transition

From DBR diode laser

80 MHzAOM
(tunable 60-100 MHz)

to Fabry-Perot cavity

l/4

n - 195 MHz45

n -75/+5 MHz45

for MOT/molasses light

97.5 MHzAOM
(tunable 60-100 MHz)

l/4

n44

for optical pumping
to F = 4, m = 0

n45

for pushing away
F = 4 atoms

56 MHzAOM

Figure 5.8: Optical layout for other beams needed for Raman tagging. The same laser is used to

generate light for the MOT/molasses, the optical pumping into F = 4, mF = 0, and for pushing
F = 4 atoms out of the interaction region after the tagging.
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to accelerate the F = 4 atoms to high velocity, leaving only the F = 3 atoms in the interaction

region; these atoms could then be detected by the usual freezing molasses method or used as

a starting point for further atomic manipulation and experimentation. This pushing beam was

combined with the phase-modulated Raman beam by a cube beam splitter before the half-wave

plate, and thus was circularly polarized as it propagated along the Raman-beam axis. The beam

also diverged rapidly (it passed through a 25.4 mm focal length lens about 0.5 m away from the

atoms), so that it was large and uniform at the atomic cloud. This light was derived from the

DBR laser beam line by a double-passed, 97.5MHz fixed-frequency AOM, as shown in Fig. 5.8.

The light was turned on at low level for 800 µs, accelerating the atoms to over 100 · 2�kL. The

circular polarization of this beam had the advantage that atoms were optically pumped into the

F = 4, mF = 4 −→ F ′ = 5, mF = 5 cycling transition; atoms in this excited state do not

decay (by dipole transitions) to the F = 3 ground level, and atoms in F = 4, mF = 4 cannot

be pumped off-resonantly to the F ′ = 4 excited level (by a dipole transition), so this transition

is tightly closed. However, it was still important to use a sufficiently low light level during the

first part of the pushing to avoid off-resonant excitation before the atoms were fully optically

pumped. This procedure removed the F = 4 atoms from the detection region after the drift

time with about 99.9% efficiency, with the remaining atoms forming a broad background in the

momentum distribution measurements.

To detect the number of atoms transferred by the Raman interaction, we used the usual

ballistic-expansion measurement. We ignored the spatial dependence of the CCD image and

simply counted the total fluorescence, which after a background subtraction is proportional to

the number of atoms in the F = 3 level. A sample measurement of Raman Rabi oscillations

on resonance (for one of the Zeeman transitions) is shown in Fig. 5.9, which exhibits clean

oscillations with a certain amount of damping. For comparison, the Raman Rabi oscillations in

the counterpropagating arrangement are shown in Fig. 5.10. The oscillations in this configuration

have lower contrast, as we expect from the previous theoretical discussion, and show much lower

overall population transfer due to the velocity selectivity. Some detuning-dependent Raman

selection profiles for the copropagating mode are shown in Fig. 5.11 for several interaction times.
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5.3.5 Hyperfine Magnetic Sublevel Optical Pumping

One difficulty in implementing velocity selection via stimulated Raman transitions in cesium is

due to the highly degenerate level structure. For a generic polarization state of the Raman fields,

there are 15 possible transitions, each with possibly different Zeeman and Stark shifts, as well

as different Rabi frequencies. To make this situation much cleaner, we implemented optical

pumping of the atoms into the F = 4, mF = 0 sublevel before driving the Raman transition.

We effected this optical pumping using another beam derived from the DBR laser, this time

with a 56 MHz AOM (as shown in Fig. 5.10) to shift the beam down in frequency to be on

resonance with the F = 4 −→ F ′ = 4 transition. The beam was spatially filtered and introduced

via the MOT beam window on the top of the chamber, so that its linear polarization direction

was along the Raman-beam propagation axis. This light was pulsed on for 50 µs, beginning

66 µs before the end of the of the ramp-down time of the 3D optical lattice. Because the

F = 4, mF = 0 −→ F ′ = 4, m′F = 0 transition is forbidden in the dipole approximation, the
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Figure 5.9: Example of an experimental measurement of excited population oscillations for a

resonant, stimulated Raman transition in copropagating mode. The damping here is due mostly

to spontaneous scattering of the Raman light. The data points here were not averaged over

multiple measurements.
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atoms accumulated in the F = 4, mF = 0 sublevel after several fluorescence cycles. Atoms that

decayed to the F = 3 ground level were returned to F = 4 by the usual repumping light, which

was turned on at the same time as the optical-pumping light. The repumping light was left on

until the end of the 3D lattice ramp-down time to ensure that all atoms were in the F = 4

ground level. Two of the Helmholtz coils were also pulsed on to provide a 1.5 G bias field along

the polarization direction of the pumping light, which swamped other residual magnetic fields

and thus prevented remixing of the magnetic sublevels. The coils were turned on 200 µs before

the pumping light to allow transients to decay away. This procedure pumpedmost (>95%) of the

atoms into the proper magnetic sublevel. Because the Raman beams were circularly polarized,

they drove the atoms from the F = 4, mF = 0 level to the F = 3, mF = 0 level via the

F ′ = 3, mF = 1 and F ′ = 4, mF = 1 excited states. The atoms thus all experienced the same

Raman Rabi frequency, and the Raman transition frequency was insensitive to magnetic fields to

first order (this transition is the cesium clock transition that currently defines the measurement
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Figure 5.10: Example of an experimental measurement of excited population oscillations for a

resonant, stimulated Raman transition in counterpropagating mode. The scale of the vertical

axis is the same as in Fig. 5.9. The population transfer is much less efficient due to the velocity

selectivity of the counterpropagating configuration. The oscillations also show an upwards trend

due to relaxation of nonresonantly coupled atoms. The data points here were not averaged over

multiple measurements.
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Figure 5.11: Experimental measurement of excited population vs. Raman detuning ∆R for dif-

ferent interaction (square) pulse lengths. The data are shown as points, and the solid lines

represent the best fit of a model based on direct integration of the Schrödinger equation for

the two-level atom. The asymmetries of the profiles, which is not predicted by Eq. (5.26), can

largely be explained by broadening due to the intensity variation of the Gaussian profile of the

Raman beams over the atomic sample, which is included in the model. The model was fit si-

multaneously to all the distributions, and the fitted parameter values are: ΩR = 2π · 2.1 kHz,
a coherence damping rate of 21 Hz, and a Raman beam waist w0 = 2 mm (assuming a Gaus-

sian MOT spatial profile with width parameter σx = 0.15 mm). The data points here were not
averaged over multiple measurements.
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of time). Because of the Zeeman shift due to the large bias field, any atoms left in other magnetic

sublevels did not participate in the Raman transition. Unfortunately, these benefits came at the

expense of temperature, which increased to 3 µK (or σp/2�kL = 1.9) after the optical pumping

(beginning with atoms cooled in the 3D optical lattice). One possible improvement would be

to implement sideband cooling into the mF = 0 sublevel [Taichenachev01], but such a scheme

requires a considerable increase in the complexity of the experiment.

5.3.6 Implementation of Stimulated Raman Velocity Selection

The 3D lattice cooling, Raman-field setup, pushing-beam setup, and optical-pumping procedure

were all important for implementing velocity selection by stimulated Raman transitions. Typi-

cally, we selected atoms to be near p = 0 as a starting point for further quantum state preparation

techniques. The procedure for Raman velocity selection (or “Raman tagging”) atoms near p = 0

was as follows:

1. Trap and cool atoms in the MOT, and then further cool the atoms in the 3D lattice.

2. Turn on the magnetic bias field along the direction of the Raman beams to define the

quantization axis.

3. Use the optical pumping light (during the ramping down of the 3D lattice) to prepare

atoms in F = 4, mF = 0 sublevel.

4. Use the Raman beams (both with σ+ polarization) in counterpropagating mode to tag

atoms with p = 2�kL in the F = 4, mF = 0 state to the F = 3, mF = 0 state with

p = 0. The Raman pulse has appropriate intensity and duration to drive a π-pulse with

the desired momentum width.

5. Use the resonant pushing light to remove atoms in F = 4.

The atoms were then further manipulated as desired, as described below, and then subjected to

the 1D, time-dependent standing-wave interaction as described in the following chapter. In the

typical experiment in Chapter 6, the Raman beams drove an 800 µs, square π-pulse. This pulse
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should result in a selected profile as in Eq. (5.26), with a half width at half maximum (HWHM)

of 0.03 · 2�kL. Because of the resolution limit set by the initial size of the MOT cloud, we could

not directly verify this profile with our ballistic-expansion measurement, but the expansion rates

and the scaling of the fluorescence of the selected atoms with the pulse duration were consistent

with the theoretical expectation. This extreme velocity selection was crucial to the success of

the experiments in Chapter 6, but had the unfortunate side effect that about 99.5% of the atoms

(after 3D lattice cooling) were discarded, causing relatively weak signals in the measurements.

5.3.7 Raman Cooling

With the setup described above, it should in principle be possible to implement Raman cooling,

where a large fraction of the atoms could be cooled into a narrow velocity slice as narrow as

(or perhaps narrower than) the Raman-tagged slice. Raman cooling works in a repetitive cycle,

where atoms at all velocities, except for those in a “target” region near zero momentum, are

transferred from the F = 4 level to the F = 3 level by velocity-selective, stimulated Raman

transitions. Then the repumping light is pulsed on to return the atoms to F = 4, but with

slightly different momentum due to the fluorescence cycle. We implemented the dual-AOM

scheme described above so that the direction of the momentum transfer due to the Raman

transition could be reversed, and thus during the Raman tagging cycle the atoms on either side

of the target region could be moved towards it. However, there are several technical challenges

involved in implementing Raman cooling, the most severe of which is the presence of residual

magnetic fields. For efficient cooling, the fields must be nulled to 1 mG or better [Reichel94],

necessitating the use of a glass chamber (with no ferromagnetic materials) and µ-metal shielding,

because the atoms are distributed among the magnetic sublevels. Furthermore, Raman cooling

leaves a broad background in the momentum distribution [Reichel94; Reichel95], which must be

removed by a final tagging sequence as described above; however, we have noted that transitions

associated with different sublevels proceed at different rates, making a clean π-pulse difficult.

An optical pumping cycle after cooling would ruin the very cold temperatures, but selecting only

atoms in a given sublevel would result in another large hit in atom number.
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To circumvent these technical problems, we attempted a modified Raman-cooling pro-

cedure, which was performed in the presence of a bias field as above. In addition to the re-

pumping, we also applied the optical pumping light during the recycling stage of each iteration.

The target state in this case is the F = 4, mF = 0 state simultaneously with p = 0, which is

a much more stringent requirement. After a brief attempt, we were not able to cool using this

technique, and we instead elected to use averaging as a more straightforward way to address the

difficulty of small signals.

5.4 Interaction-Potential Phase Control

An important part of the state-preparation procedure for the experiments in Chapter 6 was the

ability to change the phase of the one-dimensional optical lattice. One method for changing the

phase is suggested by the analysis in Section 2.6, where we concluded that a frequency difference

between the two traveling-wave components results in a moving standing wave. A phase shift

can thus be obtained by introducing a pulsed frequency difference. From an experimental point

of view, this method is not optimal because it requires splitting the beam, reducing the available

intensity (relative to a retroreflecting setup), and it requires careful mode matching of the two

traveling waves.

Because the optical lattice was formed by retroreflecting a laser beam in the setup here,

the phase of the standing wave was set by the position of the retroreflector. Thus we could

move the standing wave simply by moving the retroreflector. We could effectively move the

retroreflector by inserting an electro-optic phase modulator (EOM) in the beam path just before

the retroreflector. Doing so gave direct electronic control of the optical path length between

the atoms and the retroreflector. We used a Conoptics, Inc. model 360-40 EOM, which used a

40 mm long lithium tantalate (LTA) crystal, with a model 302 driver. The EOM had a 2.7 mm

clear aperture, and we focused the optical lattice beam onto the retroreflector using a 300 mm

focal length lens to ensure that the EOM did not clip the beam. The EOM was also aligned so

that the beam propagated slightly off the EOM axis to avoid interference fringes (the reflections

of the EOMwere also minimized by antireflection coatings on the windows and index-matching
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fluid inside the housing). To avoid polarization-modulation effects, it was important to carefully

set the EOM angle relative to the lattice-beam polarization. The lattice-beam polarization was

set to be horizontal by a cube polarizer mounted just before the entry of the lattice into the

chamber. On the other (retroreflecting) side of the chamber, we inserted another cube polarizer

before the EOM and adjusted the EOM angle to minimize the signal rejected from the polarizer

as the EOM phase was scanned.

In the previous setup of Chapter 3, the stability of the retroreflector was ensured by

rigidly mounting it to the vacuum chamber. This new setup was too large to be mounted directly

on the chamber, so we constructed a platform to mount the optics, as shown in Fig. 5.12. This

platform consisted of a 1/2” thick aluminum plate (jig plate), which rested on a similar piece of

1/2” thick aluminum. A layer of 1/2” thick Sorbothane damping rubber was sandwiched between

Retroreflector

EOM
Damping Material

Lens

Figure 5.12: Photograph of the phase-control setup for the one-dimensional optical lattice. The

components in this setup are shownmounted on the damped, raised, mounting table, and several

components for the stimulated Raman optical setup are also visible both on the main and raised

tables.
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the two aluminum plates. The lower plate was mounted rigidly to the table by six stainless

steel posts (1.25” diameter) in an irregular pattern. The optical-lattice beam propagated only

2” above the platform surface to minimize vibrations of the optical mounts. An interferometer

constructed on the platform itself measured negligible vibrations, but was incapable of detecting

center-of-mass vibrations of the platform, which also contributed to phase jitter of the optical

lattice.

This setup provided good phase control over a large range in phase (the EOM controller

had an 800 V range, where 250 V corresponds to a 2π phase shift of the lattice phase) on a

fast (∼ 1 µs) time scale. One caveat, however, is that fast changes in the phase could excite

piezoelectric resonances of the EOM, where the crystal itself begins mechanically ringing as a

result of the sudden excitation. This effect is illustrated in Fig. 5.13, where the EOM phase,

as measured by a Michelson interferometer, shows ringing in response to a sudden step in the

control voltage. The resonance occurred at 150 kHz, with a quality factor Q of about 12. Of

the available options from Conoptics, this LTA modulator was the most suitable; the KD*P
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Figure 5.13: Response of the electro-optic modulator to a sudden phase step, as measured in-

terferometrically. The fitted model (dashed line) is a sum of two pure exponentials of different

time constants and a damped cosine: f(t) = 0.87 · exp (−t/0.37 µs) + 0.11 · exp (−t/7.5 µs) +
0.011 · cos (2πt/6.8 µs− 0.79) exp (−t/25 µs) + 0.004 (for t > 0).
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modulators have a smaller available phase range while exhibiting substantially worse ringing than

the LTA modulator, even when the crystal is mechanically clamped, and the ADP modulators,

which have no piezoelectric resonances, have poor transmission at 852 nm.

5.5 State-Preparation Sequence

Now we will discuss how the various tools presented in this chapter were used to prepare lo-

calized initial states in phase space. An overall schematic view of the procedure is illustrated

in Fig. 5.14, which shows the condition of the state in phase space at various points in the pro-

cess. This state-preparation procedure began with the Raman velocity selection process as in

Section 5.3.6, which prepared a quantum state that was subrecoil in momentum but delocalized

in space. The 1D optical lattice was then turned on adiabatically, with the same temporal pro-

file and time constant (30 µs) as the 3D lattice, although here the leading edge of the profile

was clipped 300 µs before the maximum intensity was reached. The lattice caused the atoms

to become localized at the potential minima, at the expense of some heating in momentum.

Because the initial momentum distribution was narrow compared to the photon recoil momen-

tum �kL, the resulting phase-space distribution had the discrete structure shown in Fig. 5.14.

This structure can be understood intuitively in the discrete momentum transfer (in steps of

2�kL) from the lattice as it is turned on, and also indicates coherence of the wave packet over

multiple potential wells. Recalling from Chapter 2 that for adiabatic processes the band index

and quasimomentum are preserved, the atoms were loaded completely into the lowest energy

band of the optical lattice. For deep wells (as used in the experiment), the lowest band is ap-

proximately the harmonic oscillator ground state (repeated in each well), and thus the overall

distribution envelope was approximately a minimum-uncertainty Gaussian wave packet, modulo

the standing-wave period. The structure of subrecoil “slices” in the distribution out of an overall

Gaussian profile was important in the experiments in Chapter 6, and we will return to this issue

in the discussion there.

After the atoms became localized in the lattice potential wells, the phase of the standing

wave was shifted by around 1/4 of the lattice period, which had the effect of displacing the atoms
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2. Turn on 1D standing wave
adiabatically
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1. Begin with Raman-prepared
(subrecoil) atoms
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3. Sudden shift of standing-
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Figure 5.14: Schematic picture of the state-preparation sequence, beginning with the atoms

prepared by subrecoil Raman velocity selection. The influence on the atoms in phase space is

illustrated. The “striped” character of the distributions is a result of the discrete nature of the

momentum transfer to the atoms.
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onto the gradients of the potential. They were then allowed to evolve in the stationary optical

lattice, where they returned to the potential minima, acquiring momentum in the meantime. In

a harmonic potential, this procedure amounts to a boost of the wave packet in momentum, where

the distance in momentum is set by the amount of displacement. The anharmonicities in the

optical lattice led to a slight distortion of the wave packet, although it was still mostly Gaussian.

More importantly, the subrecoil structure of the wave packet was preserved because all of this

motional control was induced by the lattice. We refer to this state preparation procedure by the

acronym “SPASM,” for “State Preparation through Atomic Sliding Motion.”

To make this procedure more concrete, the experimental parameters for the first group

of data in Chapter 6 (i.e., for α = 10.5, k̄ = 2.08) were as follows: the Raman π-pulse selection

time was 800 µs, giving a velocity slice with a HWHM of 0.03 · 2�kL; the lattice was turned on

to a depth of αp = 11.8 (in the units of Section 2.7); the lattice phase was shifted by 0.25 of the

lattice period, and the atoms evolved in the lattice for 6 µs, which was the time after which the

atomic momentum was maximized; and the resulting distribution (in momentum) was peaked

at 4.1 · 2�kL, with a width σp = 1.1 · 2�kL. For the second group of data (k̄ = 2.08, for various

other values of α), the same Raman velocity selection parameters were used; the optical lattice

was turned on to a maximum depth of αp = 16.4; the lattice phase was shifted by 0.21 of the

lattice period, and the atoms evolved for 4.5 µs in the lattice; and the prepared distribution was

peaked at 4.2 · 2�kL, with a width σp = 1.7 · 2�kL. For the third data group (k̄ = 1.04), the

same Raman velocity selection was again used; the optical lattice was turned on to a maximum

depth of αp = 30.9; the lattice phase shift was 0.30 of the standing-wave period, after which the

atoms evolved for 3.5 µs; and the momentum distribution was peaked at 8.2 · 2�kL, with a width

σp = 2.1 · 2�kL.

The procedure for carrying out the experiments in the following chapter is then very

similar to the procedure in Chapter 3, albeit with a much more complicated state-preparation

sequence inserted after the initial cooling and trapping of the cesium atoms. After the state-

preparation sequence, the atoms were exposed to the temporally modulated optical lattice,

where the dynamics of interest occurred. The atoms were then allowed to drift freely in the
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dark for 20ms, and the freezing molasses andCCD camera enabled a measurement of the atomic

momentum distribution by imaging the atomic fluorescence for 20 ms.

5.6 Calibration of the Optical Potential

After the introduction of a lens and EOM in the beam path of the 1D optical lattice, we found

that the calibration method of Section 3.4.3 no longer produced reliable values for the optical

potential depth. This was most likely due to the breakdown of the assumption that the beam

waists measured at the knife edge and CCD camera were the same as the waist at the MOT.

Thus, the CCD camera was only used to collimate the beam as much as possible: first, the beam

was retroreflected with a temporary mirror before the (EOM) lens, and the beam was adjusted so

that two beam spots on the CCD (going to and from the vacuum chamber) were approximately

the same; then, the temporary mirror was removed, and the longitudinal position of the lens was

adjusted to make the spots again equal, thus ensuring that the lens focused the beam onto the

retroreflecting mirror.

The state-preparation method outlined above suggests another, in situ method to cal-

ibrate the potential amplitude. If the Raman velocity selection procedure is used to select a

subrecoil momentum sample of the atoms, and the 1D lattice is adiabatically turned on to a

large potential depth, an approximately minimum-uncertainty wave packet (modulo the period

of the lattice) results, as mentioned above. If the EOM then provides a sudden but small phase

shift, the atoms begin to oscillate in the lattice. The oscillation frequency serves as a direct mea-

surement of the potential depth. In the simplest approximation, valid for large potential depths,

the oscillations can be regarded as harmonic oscillations near the parabolic potential minima.

Recalling from Chapter 2 that the unscaled Hamiltonian for atomic motion in the optical lattice

has the form

H =
p2

2m
− V0 cos(2kLx) , (5.30)

we can expand the potential to O(x2) about x = 0 to obtain the equivalent harmonic oscillator,

which has a period

THO =
π

kL

√
m

V0
. (5.31)
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However, for a given potential depth V0, we would actually underestimate the true oscillation

period as a result of two effects, anharmonic frequency shifts and quantum effective potential

frequency shifts, which we now discuss.

5.6.1 Anharmonicity

Using the same unit scaling as in Chapter 2 (i.e., units where � = 1), the pendulum Hamiltonian

is

H =
p2

2
− αp cos x . (5.32)

For a particular value E of the Hamiltonian, we can write the pendulum period as [Tabor89]

T (k) =
4√
αp
F
(π
2
, k
)
, (5.33)

where F (θ, k) is the elliptic integral of the first kind, and

k =

√
1
2
(1 + E/αp) . (5.34)

Since F (π/2, 0) = π/2, the small-displacement (harmonic) frequency for this equation is

THO = T (0) =
2π√
αp

, (5.35)

so that the fractional period shift due to the lattice anharmonicity is

T (k)
THO

=
2
π
F
(π
2
, k
)

= 1 +
k2

4
+ O(k4) .

(5.36)

Thus, larger amplitudes of oscillation result in longer oscillation periods, which we expect from

the fact that the lattice potential drops below the parabolic approximation away from the poten-

tial minima.

5.6.2 Quantum Effective Potentials

In addition to the classical anharmonic effects, the oscillation period in the lattice is also in-

creased by the fact that we are considering a quantum wave packet. This effect is illustrated by

the numerical simulations in Fig. 5.15. Because of the adiabatic loading of the atoms into the
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ground state of the lattice, we can invoke the harmonic approximation to argue that the state

within a single well is approximately minimum-uncertainty Gaussian with momentum uncer-

tainty σp = (αp/4)1/4 and spatial uncertainty σx = (4αp)−1/4. From the Ehrenfest equations

of motion for the mean values of x and p [Ohanian90],

∂t〈x〉 =
〈p〉
m

∂t〈p〉 = −〈∂xV (x)〉 ,
(5.37)

we might expect that the quantum mean values oscillate as in the classical case, but where the

potential is “smeared” out by the spatial extent of the wave packet. Performing a convolution of

the pendulum potential with the spatial distribution of the Gaussian wave packet, we find that

this effective potential is still sinusoidal, but with a reduced amplitude:

αeff = αp exp
(
− 1
4
√
αp

)
. (5.38)
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Figure 5.15: Comparison of simulated pendulum oscillations of the classical case in the harmonic

approximation (dashed line) to the anharmonic classical pendulum oscillations (dotted line) and

the oscillations of an initially minimum-uncertainty quantum wave packet (solid line). The

slowing effects of the anharmonicity and quantum wave packet extent are evident here. The

system parameters are αp = 10 (and � = 1), with the wave packet and trajectories initially

centered at (x, p) = (0, 1.5).
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Because we have scaled the units so that � = 1, the scaled well depth αp represents the “degree

of quantumness” of the pendulum, with larger values representing more classical behavior (and

thus a smaller wave-packet area in phase space), as reflected in this quantum scaling factor.

Hence, we should expect that the quantum wave packet moves with a longer period due to

the reduced effective potential amplitude, and also that the wave packet motion will be further

retarded by “classical” anharmonic effects in the effective potential.

5.6.2.1 Wigner-Function Derivation

Hug and Milburn [Hug01] have recently produced a more formal derivation of a quantum scal-

ing factor based on the Wigner-function dynamics, in the context of the amplitude-modulated

pendulum. Here we adapt this calculation to the ordinary pendulum, since the derivation does

not depend on the temporal modulation of the potential.

We begin with the general equation of motion for the Wigner function (which we intro-

duced in Chapter 1 as the Moyal bracket),

∂tW (x, p) = −p∂xW (x, p) +
i

k̄

[ ∞∑
s=0

1
s!

(
k̄

2i

)s
∂sxV (x, t)∂

s
pW (x, p)

−
∞∑
s=0

1
s!

(
− k̄
2i

)s
∂sxV (x, t)∂

s
pW (x, p)

]
,

(5.39)

where we will keep the scaled Planck constant k̄ explicit for the time being. We can then insert

the pendulum potential,

V (x) = −αp cos(x) , (5.40)

with the result

∂tW = −p∂xW +
αp
k̄
sin(x)

∞∑
s=0

1
s!

(
k̄

2

)s
[1− (−1)s]∂spW . (5.41)

If make use of the Taylor expansion

W (x, p+ k̄/2) =
∞∑
s=0

1
s!
[∂spW (x, p)]

(
k̄

2

)s
, (5.42)

then Eq. (5.41) becomes

∂tW (x, p) = −p∂xW (x, p) +
αp
k̄
sin(x) [W (x, p+ k̄/2)−W (x, p− k̄/2)] . (5.43)
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The goal here to put this equation of motion into “classical form” (of a Liouville equation for a

classical phase-space distribution) with an effective potential Veff :

∂tW = −p∂xW + ∂xVeff∂pW . (5.44)

Hence, we can make the identification

∂xVeff =
αp
k̄
sin(x)

W (x, p+ k̄/2)−W (x, p− k̄/2)
∂pW (q, p)

. (5.45)

We now take the Wigner function to be Gaussian,

W (x, p, t) =
1
πk̄

exp
[
− ξ
k̄
(x− 〈x〉)2 − 1

k̄ξ
(p− 〈p〉)2

]
, (5.46)

where ξ(t) is a time-dependent squeezing parameter. So, we can evaluate the terms in the

effective potential,

∂pW (x, p) = −2(p− 〈p〉)
k̄ξ

W (x, p) , (5.47)

and

W (x, p± k̄/2) = exp
(
− k̄
4ξ

)
exp
[
∓1
ξ
(p− 〈p〉)

]
W (x, p) , (5.48)

and thus the effective potential becomes

Veff = −αp cos(x) exp
(
− k̄
4ξ

) sinh [1
ξ
(p − 〈p〉)

]
1
ξ
(p− 〈p〉)

. (5.49)

If we assume that the wave packet remains localized (which is implicit in assuming the Gaussian

form), then the sinh ratio is approximately unity. Thus, the effective potential is the original

potential compressed by a factor of exp[−k̄/(4ξ)].

Turning to the quantum pendulum, we can select a preferred value of ξ based on the

adiabatic loading into the lattice. Rewriting the Wigner function in terms of σx and σp and using

σxσp = k̄/2,

W (x, p) =
1√
2πσx

exp
[
−(x− 〈x〉)2

2σ2x

]
1√
2πσp

exp
[
−(p − 〈p〉)2

2σ2p

]

=
1
πk̄

exp

[
−
−2σ2p
k̄2

(x− 〈x〉)2 − 1
2σ2p

(p− 〈p〉)2
]
,

(5.50)
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we find that ξ = 2σ2p/k̄ = k̄/(2σ2x). Then, for the quantum pendulum in the harmonic oscillator

approximation, we have k̄ = 1 and σ2p =
√
αp/2, so ξ =

√
αp. Thus, the effective potential in

this case is given by

Veff(x) = −αp cos(x) exp
(
− 1
4
√
αp

)
, (5.51)

which is the same result that we found in the simple Ehrenfest (Gaussian convolution) model.

5.6.3 Calibration by Simulation

From the above analysis, we can see that the situation is not entirely simple when deciding

what oscillation frequency to expect, given a particular potential depth. To directly account
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Figure 5.16: Experimentally measured oscillation periods in the optical lattice, normalized to the

classical period in the harmonic-oscillator approximation, shown as a dashed line. For comparison

the harmonic period in the quantum effective potential is also shown (solid), which agrees rea-

sonably well with the data. Also shown is the splitting of the two lowest eigenstates (with zero

quasimomentum) calculated for the sinusoidal potential (dot-dashed line). These latter two

curves diverge for small αp, where the Gaussian approximation for the ground state of the lat-
tice breaks down. The experimental data points are averages over three measurements, and the

error bars represent statistical variations among the repeated measurements. The αp scale was
calibrated by comparing the periods in the right half of the plot directly to quantum simulations,

as described in the text.
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for these effects, we compared the measured wave-packet oscillations to quantum-pendulum

simulations. We first extracted the oscillation period of the experimental data, along with the

maximum average momentum achieved by the atomic distribution, by fitting an exponentially

damped cosine function to the measured 〈p〉 evolution data. Then a quantum simulation was

set up for a minimum-uncertainty wave packet with the same maximum average momentum,

and the αp parameter in the simulation was adjusted until the simulated period matched the

experimental period. The simulation was facilitated by the fact that the experiment used narrow

Raman velocity selection, so that it was a good approximation to use only the discrete plane-wave

basis p = n2�kL (for integer n). Although anharmonic effects were taken into account by using

the same maximum momentum in the simulations, these calibrations were typically done with

small EOM phase displacements (about 0.05 of the lattice period) to minimize these effects

and maintain the Gaussian character of the wave packet as long as possible. When performed

with several different lattice intensities, the resulting calibrated values of αp typically agreed

at the 3% level or better, although we quote a 5% uncertainty for all the well-depth values in

Chapter 6 to account for other systematic effects (such as piezoelectric ringing of the EOM) in

the calibration procedure. Fig. 5.16 shows a series of experimentally measured oscillation periods

as a function of αp, calibrated as described here.
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6.1 Overview

We will now discuss experimental results on quantum dynamics in the case where the corre-

sponding classical description is characterized by a mixed phase space, in which chaotic and

stable regions coexist. This regime is distinctly different from the strongly chaotic regime of

Chapter 4, and the study of this new regime is enabled by the state-preparation methods out-

lined in the previous chapter. The experiments study the atomic motion in a standing wave of

light that is modulated sinusoidally in time. In particular, we will focus on tunneling between

two islands of stability in the classical phase space of this system. Because the classical transport

between the islands is forbidden by the system dynamics and not by a potential barrier, this tun-

neling is known as dynamical tunneling. We will investigate the salient details of the tunneling,

including how the tunneling depends on the phase-space location of the initial condition and

the role of symmetry in supporting the tunneling. More significantly, though, we will discuss

how the presence of chaos in phase space can enhance the tunneling rate, and we will examine

evidence for such chaos-assisted tunneling in the experimental results. This evidence includes

a comparison to a dynamical tunneling process (Bragg scattering) that occurs in the integrable

counterpart to the modulated system; a fast, secondary oscillation in the tunneling dynamics;

and the dependence of the tunneling rate on the lattice intensity. Finally, we will see how noise

destroys the quantum tunneling effect and restores classical-like behavior, and how the system

is more sensitive to noise as the parameters move the dynamics closer to the classical limit.

A subset of the data presented here, including the observation of tunneling oscillations,

the effects of location in phase-space and broken symmetry, a comparison to Bragg scattering,

and the influence of a third (chaotic) state has been previously published in [Steck01].

6.2 Barrier Tunneling

Before tackling the issue of tunneling in phase space, we will begin with the familiar problem of

tunneling in a symmetric double-well potential, of which one example is shown in Fig. 6.1. In

the limit where the barrier separating the wells is arbitrarily high, the system can be regarded as

two isolated, identical potential wells, and thus the level structure of the combined system is a
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set of degenerate doublets. For a potential barrier of finite height, the doublet states are coupled

because a state localized in one well “leaks” through the barrier and into the other well. In the

weak-coupling regime, we can neglect the coupling of a particular doublet to other doublets, and

thus the Hamiltonian for a doublet can be written as

H =
(

E0 −℘/2
−℘/2 E0

)
(6.1)

in the uncoupled basis {|L〉, |R〉} (localized in the left and right well, respectively), where ℘/2

represents the coupling energy between the two states. The coupling matrix elements in this

case are negative because the perturbation is a reduction of the potential from an arbitrarily

large height. The eigenvalues of this Hamiltonian are E0 ± ℘/2, and the eigenvectors are the

symmetric and antisymmetric combinations (|L〉 ± |R〉)/
√
2 of the uncoupled states. The anti-

symmetric state has the larger energy for positive ℘, which is consistent with the small-barrier

limit of a single well. The lowest energy doublet for the quartic double well is shown in Fig. 6.1.

The doublet of a symmetric and an antisymmetric state can then fully describe the

tunneling behavior. If we begin the evolution with a state localized in the left-hand well, it
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Figure 6.1: The ground-state tunneling doublet of the quartic double well potential,H = p2/2+
x4−4x2 (with � = 1). The symmetric-state energy is−2.20, and the antisymmetric-state energy
is −2.10.
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can be written approximately as the superposition (|+〉 + |−〉)/
√
2, where |+〉 and |−〉 are the

symmetric and antisymmetric doublet states, respectively. The time-dependent solution is

|ψ(t)〉 = 1√
2

(
|+〉ei℘t/2� + |−〉e−i℘t/2�

)
= cos

(
℘t

2�

)
|L〉+ i sin

(
℘t

2�

)
|R〉 ,

(6.2)

up to an overall phase. Thus, as the two states dephase, the wave packet oscillates between

the two wells with an angular frequency of ℘/�. In the WKB (semiclassical) approximation, the

tunnel splitting ℘ can be written [Landau77; Tomsovic94; Brack97]

℘ =
�ω0
π
exp
(
−1

�

∫ x2
x1

√
2m(V (x)− E0) dx

)
, (6.3)

where x1 and x2 are the two inner classical turning points at energy E0, and ω0 is the classical

angular oscillation frequency in one of the uncoupled wells. This A exp(−S/�) scaling of the

tunneling rate with �, where A is a smooth function of � and S is the imaginary part of the

classical action along a (complex) path connecting the two tunneling regions, is characteristic of

tunneling where only two states are involved [Tomsovic94; Creagh98].

It is important to note that the tunneling here is facilitated by the reflection symmetry

of the system. In a double well with small asymmetry (i.e., the energy difference between the

wells is small compared to the uncoupled energy splittings), we can simply change the model

Hamiltonian (6.1) to reflect an energy displacement of one well:

H =
(
E0 +∆ −℘/2
−℘/2 E0

)
. (6.4)

In this model, ∆ controls the asymmetry of the system. Comparing this Hamiltonian to the

Hamiltonian (2.25) for a driven two-level atom in the rotating-wave approximation, we see that

these two systems are formally equivalent. Thus the eigenvalues are

E± = E0 +
1
2

(
∆∓

√
∆2 + ℘2

)
, (6.5)

and the corresponding eigenvectors are

|+〉 = sin θ|L〉 + cos θ|R〉
|−〉 = cos θ|L〉 − sin θ|R〉 , (6.6)
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where

sin θ =

√√√√1
2

(
1− ∆√

∆2 + ℘2

)

cos θ =

√√√√1
2

(
1 +

∆√
∆2 + ℘2

)
,

(6.7)

or more compactly,

tan(2θ) = − ℘
∆

(
0 ≤ θ < π

2

)
. (6.8)

As in the two-level atom, the |+〉 and |−〉 states are the “dressed” states of the system, and the

tunneling oscillations can be regarded as Rabi oscillations between the two wells. The asymme-

try in the double well then corresponds to driving a two-level atom off resonance, and the cou-

pling induces an avoided crossing of the two levels as a function of∆, as illustrated in Fig. 6.2. In

the asymmetric case, the eigenstates lose their symmetric and antisymmetric characters, reduc-

ing to the uncoupled states in the limit of large ∆. The tunneling proceeds at the generalized
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Figure 6.2: Illustration of an avoided crossing of a tunneling doublet as a function of the asym-

metry parameter∆, as described by Eq. 6.5. The dashed lines show the energies in the absence

of any coupling.
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Rabi frequency
√

℘2 + ∆2, which is faster than in the symmetric case, but the tunneling is

suppressed in the sense that only a fraction ℘2/(℘2 + ∆2) of the population in the initial well

participates in the coherent tunneling oscillation. Hence, the symmetry is an important ingre-

dient for producing the tunneling. For larger asymmetries, a state in one well may couple to a

different state in the other well, causing this picture to break down; such “accidental” degen-

eracies can also lead to tunneling, even in the absence of symmetry.

6.3 Dynamical Tunneling

In the case of the double-well potential, the potential barrier is an obvious impediment to the

classical transport between the two wells. However, it is useful to regard the classical trans-

port more abstractly, from the point of view of the phase space of the double well, as shown in

Fig. 6.3. Here the two wells are represented by regions surrounding stable (elliptic) fixed points.

Classical trajectories within a single well are confined to nearly elliptical trajectories surrounding

only one of the fixed points, while trajectories with enough energy to cross the potential barrier

are represented by larger contours that surround both of the elliptic points. We can thus view

these invariant surfaces along which the trajectories lie (which correspond to KAM surfaces in

Figure 6.3: Phase space for the quartic double-well potential in Fig. 6.1. The barrier tunnel-

ing can be regarded as tunneling between classical invariant tori associated with the two wells.

Classical transport between the wells is forbidden because the classical trajectories are confined

along these invariant surfaces.
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near-integrable systems) as barriers for the classical transport, because classical trajectories can-

not cross these surfaces. This is true in a trivial sense for the double well, because all trajectories

are confined to their corresponding surfaces. However, these invariant surfaces retain their role

as barriers for classical transport in all systems with two degrees of freedom (or, equivalently, pe-

riodically driven systems with one degree of freedom), even when the system is not integrable.

Trajectories can wander freely throughout chaotic regions, but invariant surfaces (including KAM

surfaces, which survive in the presence of weak, nonintegrable perturbations) divide the phase

space and cannot be crossed by any trajectory, as a consequence of the continuity and the deter-

ministic character of the equations of motion. This is not true in systems with N > 2 degrees

of freedom, because the N -dimensional invariant surfaces no longer partition the (2N − 1)-

dimensional surfaces of constant energy (thus allowing for Arnol’d diffusion [Reichl92]). For the

systems that we will consider here, though, we can regard these invariant surfaces as being the

fundamental barriers in phase space to classical transport.

Invariant surfaces are common in nearly integrable systems, and a potential barrier is

not necessary for their existence. Davis and Heller first pointed out that dynamical tunneling

could occur between two separated, symmetry-related stable regions in phase space, where the

classical transport is forbidden by the dynamics and not by a potential barrier [Davis81]. They

considered tunneling between two types of oscillatory motion, which corresponds to tunneling

between two islands of stability in phase space, in a two-dimensional, nonlinear potential with

a reflection symmetry. Tunneling can also occur between other types of stable regions in phase

space, such as bands of KAM surfaces in the phase space of the annular billiard [Doron95].

In fact, the two essential ingredients for tunneling are the existence of a discrete sym-

metry and the separation of the (quasi)energy eigenstates in phase space [Chirikov95]. The

second ingredient is obviously fulfilled in the barrier-tunneling problem, because the low-energy

states in the two wells are localized in their respective wells. In dynamical tunneling between

two islands of stability, states are also localized in the islands, which support states similar to

harmonic-oscillator states [Scharf92] (as one might expect from EBK quantization). As we have

seen before, though, localization is natural in quantum nonlinear systems even with widespread
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chaos. Thus, there is also the possibility of “retunneling” [Sridhar92] between quantum local-

ized states in the Sinai billiard. Here, the transport is forbidden by quantum localization (but

not classically), but oscillatory transport occurs anyway across this quantum “barrier.” A simi-

lar tunneling effect can occur between symmetry-related, exponentially localized states in the

kicked rotor [Casati94].

Previous experimental work in the area of dynamical tunneling has been restricted to

spectroscopic observation of tunneling doublets. It has been pointed out [Frederick88; Heller91]

that the experimental fluorescence-excitation spectrum of the benzophenone molecule in

[Holtzclaw86] shows doublet features that correspond to dynamical tunneling. In this molecule,

there are two symmetry-related benzene rings, each of which can undergo twisting motions. The

tunneling is between the two “local modes,” where one ring twists while the other is at rest; the

spectral doublets then correspond to the symmetric and antisymmetric combinations of the lo-

cal modes. There is also experimental evidence for dynamical tunneling in wave analogies to

quantum mechanics. The tunneling doublets have also been directly observed in the resonance

spectroscopy of a microwave-cavity realization of the annular billiard [Dembowski00]. Further-

more, the Shnirelman peak [Chirikov95] in the level spacing distribution is a similar signature of

dynamical tunneling, and has recently been observed in an acoustical resonator [Neicu01] and

a microwave-cavity experiment [Koch01]. Finally, there is an experimental effort, complemen-

tary to the one described here, to study dynamical tunneling of a Bose-Einstein condensate in

an amplitude-modulated standing wave of light [Hensinger01]. This experiment, while being

similar in some respects to the experiments described below, considers tunneling between a dif-

ferent pair of resonances (second-order resonances [Dyrting93]) than we consider later in this

chapter.

6.3.1 Tunneling in Atom Optics

The basic experimental system that we used to study tunneling is very similar to that used in the

kicked-rotor experiments in Chapter 4 (save for the substantially more complicated quantum-

state preparation), the primary difference being the temporal dependence of the potential. To
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produce a more manageable, mixed classical phase space, the amplitude modulation of the po-

tential was relatively smooth:

H =
p2

2m
− 2V0 cos2

(
πt

T

)
cos(2kLx) . (6.9)

The quantities here are as they were defined in Chapter 4. This Hamiltonian is again that

of the pendulum, but with a sinusoidal variation of the potential amplitude in time from zero

to 2V0 with period T . We can make a transformation into scaled units that is similar to the

transformation used for the kicked rotor, since this system is effectively a kicked rotor with long,

sinusoidal pulses:

x′ = 2kLx
p′/k̄ = p/2�kL

t′ = t/T
H ′ = (k̄T/�)H
α := (k̄T/�)V0
k̄ := 8ωrT .

(6.10)

Here, we have chosen the time scaling so that the scaled period of the modulation is unity, α is

the scaled amplitude of the potential (related to the amplitude in pendulum units by α = k̄2αp),

and k̄ is again the effective Planck constant in the scaled units. The Hamiltonian in scaled units,

after dropping the primes, is

H =
p2

2
− 2α cos2(πt) cos(x) , (6.11)

with the Schrödinger equation given byHψ = ik̄∂tψ.

In the spirit of the analysis of Section 4.4.4, we can rewrite the potential as

V (x, t) = −α cos(x)− α
2
cos(x+ 2πt)− α

2
cos(x− 2πt) . (6.12)

In this form, the potential appears as the sum of three pendulum-like terms with time-inde-

pendent amplitude. Thus the modulated potential can be regarded as a combination of three

pendulum potentials; two of these potentials are moving with momentum ±2π, and the third

is stationary. When this system is sampled at integer times, these three terms produce primary

resonances in phase space centered at (x, p) = (0,±2π) and (0, 0). This structure is evident

in the phase spaces in Appendix C, especially for small α. For larger α, the resonances interact,



208 Chapter 6. Chaos-Assisted Tunneling

producing a phase-space structure of bands of chaos surrounding the three main islands of stabil-

ity. The tunneling that we consider here is between the two outer islands of stability, which are

related to each other by reflection symmetry through the origin (x, p) = (0, 0). In configuration

space, the tunneling occurs between a state of coherent motion in only one direction to a state

of the oppositely directed motion. These two states each correspond to being tightly bound to

one of the two moving components of the lattice. The center island does not directly participate

in the tunneling.

To observe tunneling in the experiment, we used the state-preparation procedure de-

scribed in Chapter 5. This procedure produced an initial state centered on one of the outer

resonances with narrow slices taken out of the overall Gaussian profile (because of the narrow

Raman velocity selection). A schematic representation of the initial condition for k̄ = 2.08

(corresponding to a 20 µs modulation period) and an 800 µs Raman-pulse duration is shown in

Fig. 6.4 with the classical phase space for the experimental value of α = 10.5. In this strongly

driven regime, the center island has mostly dissolved into the chaotic sea, making this a clean

regime for studying tunneling between the remaining two islands. The two islands are located

8 · 2�kL apart in momentum. The measured evolution of the momentum distribution in this

case is plotted in Fig. 6.5, where the distribution was sampled every 2modulation periods out to

80 periods. Four of these distributions are also shown in more detail in Fig. 6.6. Four coherent

oscillations of the atoms between the islands are apparent before the transport is damped out.

During the first oscillation, nearly half of the atoms appear in the secondary (tunneled) peak.

At this point, a few words are in order concerning the initial condition plotted in Fig. 6.4.

The ellipses shown are the 50% contours of the atomic distribution in phase space. This depic-

tion represents a classical distribution with the same x and pmarginal distributions as the Wigner

function for the initial state, but is not itself the correct Wigner function. The proper Wigner

function for this state is more complicated, and can be constructed from the plotted distribu-

tion as follows. Whereas the distribution shown has momentum slices spaced by k̄, the Wigner

function has additional (positive) slices within the Gaussian profile between these slices, so that

the spacing is k̄/2. This combined structure is then repeated a distance π away in position,
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Figure 6.4: Phase space corresponding to the experimental conditions for the data in Fig. 6.5

(α = 10.5). A schematic representation of the atomic initial state is superimposed in red on

the upper island (k̄ = 2.08), showing the subrecoil structure that we expect from the state-

preparation procedure. A magnified view of the upper island and initial quantum state is also

shown.
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Figure 6.5: Observation of coherent tunneling oscillations in the momentum-distribution evolu-

tion between the two symmetry-related islands of stability, as shown in Fig. 6.4. The two island

centers are separated in momentum by 8 · 2�kL. In this plot, the distribution was sampled ev-

ery 40 µs (every 2 modulation periods). Each of the distributions represent averages over 20
iterations of the experiment.
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Figure 6.6: Detailed view of the first four highlighted distributions in Fig. 6.5, where it is clear

that a significant fraction of the atoms tunnel to the other island. The distributions here were

averaged over 100 iterations of the experiment.



6.3 Dynamical Tunneling 211

except that the slices added to the original three have negative amplitude in this new group.

The population k̄/2 away from the center of the wave packet integrates to zero when comput-

ing the p marginal distribution, and the population is only in the vicinity of the island when

computing the x marginal distribution. These extra structures represent coherence of the wave

packet over multiple wells of the potential, where the coherence length scales as the inverse of

the width of the narrow slices. Finally, we note that the initial condition plotted here assumes

a minimum-uncertainty Gaussian, but in the experiment the wave packet was distorted slightly

by anharmonic evolution in the lattice during the state preparation.

6.3.2 Broken Symmetry

The subrecoil Raman velocity selection is important not only to produce a nearly uncertain-

ty-limited wave packet, but also in order to satisfy a quantum symmetry required to observe

tunneling. This symmetry stems from the discrete translational symmetry of the potential, as

discussed in Chapter 2, which causes momentum transitions to occur in discrete steps of k̄ (or

2�kL in unscaled units). Thus the momentum state |nk̄ + δ〉 (where n is an integer) is coupled

to the |−nk̄+ δ〉 state via 2-photon transitions. For 0 < |δ| < k̄/2, these states are therefore not

coupled to their symmetric reflections about p = 0. In the language of the double-well potential

above, this situation is equivalent to an asymmetric double well, because the potential couples

two states with a difference of 2nk̄δ in energy. Thus, complete tunneling only fully occurs

for the |nk̄〉 momentum states and is suppressed for states off this integer ladder. A deviation

in momentum from this symmetric ladder is equivalent to a broken time-reversal symmetry

[Casati94], and the symmetric/antisymmetric doublet character can be sensitive to this broken

symmetry [Chirikov95]. This symmetry condition is automatically fulfilled for a rotor, because

the periodic boundary conditions select the tunneling states, but in the case of a particle in

an extended potential, as in the present experiment, careful state preparation is required to

populate only the proper states. Thus the subrecoil velocity selection, coupled with the rest

of the state-preparation sequence, fulfills the simultaneous goals of producing a wave packet

localized on an island of stability and populating only states with momentum nearly an integer

multiple of k̄.
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The importance of the subrecoil momentum selection is demonstrated in Fig. 6.7,

where the evolution of 〈p〉 corresponding to the data in Fig. 6.5 (with an 800 µs Raman se-

lection pulse) is shown, along with data for 400 and 200 µs Raman pulses. Shorter Raman pulses

result in wider velocity slices, so that fewer of the atoms fulfill the symmetry condition, and thus

the tunneling oscillations are suppressed as the Raman pulse duration decreases. Also shown is

the case where the experiment was performed without any Raman velocity selection, and the

state-preparation sequence in the 1D lattice was performed immediately after cooling in the 3D

lattice. The momentum distribution after the atoms were released from the 3D lattice was not

subrecoil, so the prepared wave packet was no longer minimum uncertainty (the wave-packet
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Figure 6.7: Comparison of tunneling oscillations for different Raman π-pulse durations, and
thus selected velocity widths (α = 10.5, k̄ = 2.08). The strongest oscillations shown here

(circles) correspond to the longest (800 µs) Raman velocity selection pulse used, which implies
a momentum slice with a HWHM of 0.03 · 2�kL. The data here are derived from the momentum

distributions in Fig. 6.5. Also shown are data for a 400 µs selection pulse (corresponding to a

HWHM of 0.06 · 2�kL) and a 200 µs selection pulse (corresponding to a HWHM of 0.12 · 2�kL),

illustrating the reduced contrast in the tunneling oscillations as the pulse duration is decreased.

The heavy solid line corresponds to a measurement where no Raman velocity selection was

performed, but the atoms were subjected to the state-preparation sequence after cooling in the

3D lattice (where they have a HWHM in momentum of 0.8 · 2�kL). The tunneling oscillations

are completely suppressed in this last case. The data were averaged over 20 (800 µs tag), 10
(400 µs tag), 5 (200 µs tag), and 1 (no Raman tag) iterations of the experiment.
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area in phase space was about three times the size of a minimum-uncertainty state). More im-

portantly, though, there was no subrecoil structure in this last case, so that the tunneling oscil-

lations are completely absent in the figure. The evolution of the momentum distribution in this

case is shown in Fig. 6.8. There is perhaps a half of a tunneling oscillation at the beginning of the

evolution, but the oscillations are again clearly suppressed. Most of the atoms have suppressed

tunneling amplitudes, because they are too far away from the proper tunneling momenta. Also,

because there is a continuum of states populated near the symmetric ladder, the different mo-

mentum classes tunnel at slightly different rates. This situation provides another mechanism

for damping of the coherent oscillations, similar to broadened excitation of a two-level atom.

We also studied this broken symmetry more directly by fixing the velocity-selection

width at the minimum value and varying the locations of the velocity slices within the Gaussian

profile. This was accomplished easily by slightly varying the detuning of the Raman pulse before

Figure 6.8: Evolution of the momentum distribution as in Fig. 6.5, but without Raman velocity

selection. The tunneling oscillations are clearly suppressed here.
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loading the atoms into the standing wave. The experimental results are shown in Fig. 6.9, where

the data with the optimum Raman detuning are compared to data with two other Raman detun-

ings. As the detuning increases, the tunneling oscillations are again suppressed, being almost

fully destroyed for an offset corresponding to 0.12 · 2�kL in momentum. The tunneling is thus

quite sensitive to this broken symmetry.

Fig. 6.10 shows simulations of the tunneling oscillations that model the Raman tag

widths in Fig. 6.7 as well as oscillations in the limit of arbitrarily narrow velocity selection (i.e.,

the rotor case). The simulation assumes an overall profile of a minimum-uncertainty wave packet

with the same center and momentum width as in the experiment, along with ideal Raman π-

pulse momentum-selection profiles. With no width, there are no signs of damping, and the

tunneling is nearly complete. With wider momentum slices, a smaller fraction of the atoms

successfully tunnels, and the tunneling oscillations become increasingly damped. The Raman

tagging thus explains a substantial part of the incomplete tunneling and damping in the exper-
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Figure 6.9: Comparison of tunneling oscillations for different Raman detunings (α = 10.5, k̄ =
2.08). The strongest oscillations observed (circles) correspond to Raman velocity selection at

p = 0. The other two cases are for velocity selection at p = 0.05 · 2�kL (squares), where the

oscillations are partially suppressed, and p = 0.12 · 2�kL (triangles), where the oscillations are

almost completely suppressed.
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iment. In principle, then, a Raman tagging pulse even longer than 800 µs could have provided

more complete tunneling, although such a pulse was impractical, as the atoms would have fallen

too far with respect to the beams over the course of the experimental sequence.

Finally, the reader may have noticed that the average momenta 〈p〉 in the experimental

plots are reduced in magnitude compared to what one might expect. This is especially evident

at the beginning of the evolution, where the average momentum appears to be around 3.3 · 2�kL,

even though the distribution is peaked at 4.1 · 2�kL. This effect is an artifact of the reduction

of the distributions to average values, where the broad backgrounds of the distributions and the

truncation at large momenta (the k̄ = 2.08 data are truncated beyond±9·2�kL and the k̄ = 1.04

data are truncated beyond±14.1 · 2�kL) skew the computed means to have magnitudes that are

smaller than their actual values.
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Figure 6.10: Simulation of the effects of the Raman tag width on the tunneling signal (α = 10.5,
k̄ = 2.077). The average momentum 〈p〉 is plotted every 20 µs modulation period for a single,
minimum-uncertainty wave packet with an overall Gaussian envelope (out of which the Raman-

selected slices are taken) centered at (x0, p0) = (0, 4.1 · 2�kL), with σp = 1.1 · 2�kL, to model

the experimental conditions in Fig. 6.7. This calculation assumes idealized (square) π-pulse
lineshapes, as in Eq. (5.26), for the Raman pulse durations used in the experiment. The case of

an arbitrarily narrow velocity selection is also shown, which maximizes the tunneling-oscillation

amplitude.
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6.3.3 Tunneling Dependence on Wave-Packet Location

To argue that the observed tunneling was indeed between islands of stability, it was impor-

tant to demonstrate that the tunneling is sensitive to the location of the wave packet in phase

space. Just after the state preparation sequence for the above experiments, the wave packet was

moving. Thus, it was possible to displace the initial wave packet in the x-direction in phase

space simply by inserting a time delay between the usual state-preparation procedure and the

amplitude-modulated lattice phase of the experiment. Doing so produced a shift of the wave-

packet center, where the distance was proportional to the time delay, along with a shear of the

profile of the wave packet due to dispersion effects. Fig. 6.11 shows the usual zero-delay case

compared to data with three different time delays, corresponding to displacements of 1/4, 1/2,
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Figure 6.11: Comparison of chaos-assisted tunneling (α = 10.5, k̄ = 2.08) for different free-
drift times before the standing-wave interaction, which amount to different displacements of

the initial condition in the x-direction in phase space, as illustrated in Fig. 6.12. The strongest
oscillations occur for zero drift time (filled circles), where the initial wave packet is centered

on the island of stability as in Fig. 6.4. The oscillations are significantly suppressed for a 3.8
µs drift time (squares), which displaces the initial wave packet center by 1/4 of a period of

the standing wave. Tunneling oscillations are completely suppressed for a 7.6 µs drift time
(triangles), corresponding to a 1/2-period offset of the initial wave packet. For a 15.1 µs drift
time (open circles), the wave packet is again centered on the island, and coherent oscillations

are restored. The data here were averaged over 20 iterations of the experiment.
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and 1 full period of the lattice potential. Schematic plots of the initial conditions in the clas-

sical phase space are shown in Fig. 6.12 for these four cases. The tunneling oscillations are

strongest for zero time delay, when the wave packet was centered on the island. For the 1/4-

period displacement, the wave packet was centered in the chaotic region next to the island,

and the tunneling oscillations are significantly suppressed. For the 1/2-period displacement, the

wave packet was centered in the outer stability region, and the tunneling oscillations are almost

completely suppressed. For the longest time delay, the wave packet was displaced by a full pe-

riod of the potential and thus is again centered on the island. The tunneling oscillations return

0.0 µs delay 3.8 µs delay

7.6 µs delay 15.1 µs delay

Figure 6.12: Initial conditions in phase space for the four time delays used in obtaining the data

of Fig. 6.11. The large ellipse around the three narrow population slices in each case marks the

overall profile of the wave packet to guide the eye.
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in this case, but with smaller amplitude due to the stretched character of the wave packet after

the dispersive free evolution. Hence, it is clear that the islands of stability were important in

supporting the tunneling in this experiment.

We have also displaced the center of the wave packet in the p-direction in phase space

by changing the amplitude of the lattice phase shift during the state preparation (and adjusting

the subsequent evolution period in the lattice accordingly). For the experimental parameters

here, we varied the wave packet center in steps of 0.5 · 2�kL, and we observed strong tunneling

when the wave packet was centered at p/2�kL = 3, 3.5, and 4, while tunneling was suppressed

at the other values outside this range.

6.4 Chaos-Assisted Tunneling

In considering the tunneling phenomenon in the experiment, we have thus far focused only on

the role of the islands of stability in the tunneling. However, as we will now discuss, the chaotic

region surrounding the islands is important in enhancing the tunneling process, and we will argue

that the tunneling in the experiment is due to chaos-assisted tunneling.

The possibility of tunneling enhancement by classical chaos was first introduced in a

numerical study by Lin and Ballentine [Lin90], where it was found that the tunneling rate

between islands of stability in the periodically driven, double-well potential could be orders of

magnitude larger than the tunneling rate in the undriven (integrable) double well. While the

presence of two islands related by a discrete symmetry is important in supporting the tunneling

in this system [Peres91a], the authors attributed the increased tunneling rate to the presence

of the chaotic region in the classical phase space. It was subsequently shown that the tunneling

rate is correlated with the degree of overlap of the tunneling states with the chaotic region

[Utermann94], which also points to the role of the chaotic sea as a catalyst for the tunneling.

This enhancement of the tunneling was understood in [Bohigas93; Tomsovic94] (where the

term “chaos-assisted tunneling” was introduced) in terms of an avoided crossing of the tunneling

doublet with a third level associated with the chaotic region, which can greatly increase the

tunnel splitting. Because the (quasi)energies of the chaotic states exhibit strong and irregular
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dependence of the system parameters, the tunneling rate also exhibits irregular fluctuations over

orders of magnitude [Roncaglia94; Zanardi95; Mouchet01], sometimes reaching zero for exact

crossings of the tunneling doublet (the “coherent destruction of tunneling” [Grossman91]). The

smooth, universal dependence of the tunneling rate on �, as mentioned above for the double-well

tunneling, is therefore lost for chaos-assisted tunneling. In addition to this three-state picture,

chaos-assisted tunneling has also been understood in terms of the dominance of indirect paths,

which are multi-step paths that traverse the chaotic region, over direct paths, which tunnel in

a single step and are responsible for regular (two-state) tunneling [Frischat98]. Thus, chaos-

assisted tunneling occurs as small portions of the population from the initial wave packet break

off, transport through the chaotic region, and then accumulate in the symmetric region, without

a large population building up in the chaotic region [Tomsovic94; Tomsovic01]. By contrast,

direct tunneling occurs with an always negligible population in the intermediate region.

The sense in which we mean “chaos-assisted tunneling” here is the influence of the

chaotic region on tunneling transport between symmetry-related regions in phase space, but this

term has also been applied in the sense of open systems, where the tunneling implies an escape

from a bound state. In this vein, chaos-assisted tunneling has been invoked to explain fluctua-

tions in the energy and rate of ionization of Rydberg atoms in microwave fields [Zakrzewski98],

and also to explain mode lifetimes in weakly deformed optical micro-resonators [Nöckel97].

Previous experimental work in chaos-assisted tunneling has been performed in the spec-

troscopy of a microwave resonator in the shape of an annular billiard [Dembowski00]. The au-

thors measured the dependence of the quasidoublet splittings on the locations of the states in

phase space and on the eccentricity of the cavity, demonstrating an enhancement in the split-

ting for states near the border between the stable and chaotic regions. Chaos-assisted tunnel-

ing has also been invoked to explain features in the decay of superdeformed nuclear states to

normal-deformed states [Åberg99], although the interpretation here is not entirely straightfor-

ward [Tomsovic01]. It is also worth noting that another atom-optics experiment studies tunnel-

ing of atoms in an optical lattice of double wells [Haycock00], where the classical description

is chaotic as a result of the coupling of the center-of-mass motion to the spin state of the atom
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[Ghose01]. So far, though, the symptoms of chaos-assisted tunneling that we describe below

have not been observed in this system. Other experiments [Fromhold94; Wilkinson96a] con-

sider the transport in the resonant tunneling diode, where a strong magnetic field induces chaos

in the classical limit. However, the tunneling here is enhanced by energy resonances of states

on either side of a barrier (corresponding to periodic orbits in the chaotic quantum-well region),

and thus the tunneling is not enhanced by the chaos in the sense of this chapter.

6.4.1 Singlet-Doublet Crossings

We will now review the simplified three-state model introduced in [Bohigas93; Tomsovic94] be-

cause of its importance in understanding chaos-assisted tunneling and its utility in interpreting

the experimental data. Because we are considering a periodically driven system, though, we will

consider a Floquet-Hamiltonian model as in [Kohler98], rather than the original Hamiltonian

model. We recall from Section 4.5.1 that the Floquet states are eigenstates of the unitary evolu-

tion operator U(t+1, t) over one period of the modulation, with eigenvalue exp(−iεn/k̄), where

εn is the quasienergy. The eigenstates can also be written as

|ψn(t)〉 = e−iεnt/k̄|χn(t)〉 , (6.13)

where the state |χn(t)〉 is periodic in time with the same period as the modulation. Thus, the

quasienergies represent the phase evolution of the Floquet states (in a stroboscopic sense), just

as the energies govern the phase evolution of the energy eigenstates for autonomous systems.

The periodic states |χn(t)〉 are also eigenstates of the Floquet Hamiltonian [Mouchet01],

H := H − i�∂t, (6.14)

with eigenvalue εn. We will therefore construct a model Floquet Hamiltonian that captures the

essence of chaos-assisted tunneling.

We consider a doublet of tunneling states, localized on the two islands of stability (reg-

ular regions), with quasienergies εr and εr + δr, so that δr parameterizes the tunneling rate in

the absence of interaction with other levels. These states have opposite parity, and for the sake
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of concreteness, we can take the state with quasienergy εr to be of even parity. We also con-

sider a third state in the chaotic region (although we note that three-level crossings can also be

induced by states in other stable regions [Bonci98; Frischat98; Brodier01]), with quasienergy

εr + ∆c. Without loss of generality we may assume that this state has even parity; notice that

the states in the chaotic region do not generally occur in narrowly spaced doublets, so that we

can ignore the effect of the corresponding state of odd parity. The chaotic state does not inter-

act with the odd member of the tunneling doublet, but we assume that there is some nonzero

interaction between the two even states. We may then write the model Floquet Hamiltonian as

[Bohigas93; Tomsovic94; Kohler98]

H =


 εr + δr 0 0

0 εr β/2
0 β/2 εr +∆c


 , (6.15)

where β represents the coupling between the chaotic state and the even regular state. Thus, the

two coupled states undergo an avoided crossing, with quasienergy solutions of the same form as
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Figure 6.13: Illustration of a three-level avoided crossing of a tunneling doublet with a third

(chaotic) state, as described by the model (6.15). The behavior of the three quasienergies is

shown as a function of the detuning∆c of the chaotic state, for an unperturbed doublet splitting

δr/β = 0.1. The chaotic state interacts with the regular state of the same parity (both shown as
blue lines), and the other tunneling state (the green line) is unaffected by the crossing in this

simple model. The dashed lines show the two repelling states in the absence of any coupling.
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in the two-level case in Eqs. (6.5)-(6.8), while the odd regular state remains unchanged. This be-

havior is illustrated in Fig. 6.13. In the case where the coupling energy β/2 is large compared to

the two-level splitting δr (which is the case when the regular states have substantial overlap with

the surrounding chaotic region), the tunnel splitting can be greatly enhanced, becoming of the

order of β/2 between the odd state and either of the even states near the center of the crossing.

As one might expect in an avoided crossing, the even regular state and the chaotic state exchange

their character as ∆c is swept through zero, as verified numerically in [Latka94b]. Thus, near

the center of the crossing, the two even states each have population both in the islands and in

the chaotic region, whereas away from the crossing it is possible to clearly distinguish a predom-

inantly regular and predominantly chaotic even state. In a singet-doublet crossing, one expects

a complicated time dependence, compared to the sinusoidal two-state tunneling, because three

states will be excited by a wave packet localized on a single island. In general, the three splittings

will all be different, leading to complicated beating in the time domain [Kohler98].

6.4.2 Comparison with Integrable Tunneling

The tunneling that we have studied is between two oppositely directed modes of motion. In

unmodulated optical lattices, however, Bragg scattering is a well-known dynamical-tunneling

mechanism, as we discussed in Section 2.7.1. Bragg scattering produces similar results to the

tunneling that we have described, including sensitivity to the same broken symmetry that we

discussed above, even though there is no classical chaos without a modulation of the lattice. It

was therefore important to demonstrate that the tunneling here is not simply Bragg scattering,

but that the amplitude modulation has a substantial effect on the tunneling dynamics. We have

done this already to a certain extent by demonstrating that the initial state must be centered on

the island of stability for tunneling to occur (Bragg scattering occurs between plane-wave states,

which are delocalized in position, and thus should not be sensitive to spatial displacements of

the initial condition). However, a direct comparison between tunneling in chaotic and integrable

systems is also illuminating.

A sensible integrable counterpart of the modulated system arises by using the optical
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lattice with constant amplitude, where the potential depth is taken to be V0. Doing so produces a

pendulum, such that the lattice intensity is the same, on average, as in the amplitude-modulated

system. The phase space for the pendulum corresponding to the experimental conditions in

Fig. 6.4 is shown in Fig. 6.14, along with the same initial condition as before. The wave packet is

centered outside the separatrix, so that classical transport to the opposite momentum region is

also forbidden here. However, high-order Bragg scattering, which is a manifestation of quantum

above-barrier reflection [Heller99], allows quantum oscillatory transport between these momen-

tum regions.

Figure 6.14: Phase space of the pendulum, with the same average potential amplitude as the

modulated-pendulum case in Fig. 6.4. The same initial condition is also shown here. The initial

state is centered outside the separatrix, so that classical transport to the opposite (symmetric)

momentum region is also forbidden here. Notice that the momentum axis is in pendulum scaled

units (i.e., multiples of 2�kL), rather than the scaled units for the modulated pendulum.
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We recall from Section 2.7.1 that the Bragg oscillation frequency is

Ω′B,n =
αn

k̄2n−1[(n− 1)!]2 , (6.16)

when adapted to the scaled units of the amplitude-modulated pendulum. In this form, it is

not obvious that Bragg scattering has the expected universal dependence exp(−S/k̄) for two-

state tunneling that we mentioned above. Since tunneling occurs from some initial momentum

(n/2)k̄ to −(n/2)k̄ (for integer n) as an nth-order scattering process, the order n is effectively a

function of k̄. Then, in the semiclassical limit of large n, we can invoke Stirling’s approximation,

and the Bragg rate becomes

Ω′B,n � 1
2π

[
(2p)2

αe2

]−p/k̄
, (6.17)

which is consistent with the expected scaling with k̄. Notice that the factor in the square braces

is greater than unity, since to be in the Bragg regime (where population in the intermediate
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Figure 6.15: Comparison of chaos-assisted tunneling oscillations (circles) to transport in the

corresponding quantum pendulum (squares). The experimental conditions are α = 10.5 and
k̄ = 2.08 in the modulated case, with the same average intensity used in the pendulum case.

No tunneling oscillations are observed in the pendulum case over the interaction times studied

in the experiment. The expected period for 8th-order Bragg scattering is 1 s, which is much

longer than the 400 µs period of the tunneling between islands of stability. The data here were
averaged over 20 iterations of the experiment.
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states can be adiabatically eliminated) the wave packet must be outside the classical pendulum

separatrix, which implies that |p| > 2
√
α.

The tunneling oscillations of Fig. 6.5 are compared with the behavior of the correspond-

ing pendulum in Fig. 6.15. No tunneling oscillations are visible in the integrable case over the

time scale studied in the experiment. Since the initial distribution is peaked near 4 · 2�kL, the

dominant transport process in the pendulum is 8th-order Bragg scattering. For n = 8, α = 10.5,

and k̄ = 2.08, the Bragg period is about 1 s, which is much longer than the 400 µs period of the

tunneling oscillations in the chaotic case (and thus the experimental Bragg measurement is in

accord with our expectations).

We have also demonstrated tunneling in a parameter regime that is closer to the classical

limit (k̄ = 1.04), as shown in Fig. 6.16. The initial distribution here is peaked around 8 · 2�kL,

and so this coherent, 32-photon process is similar to 16th-order Bragg scattering. The expected

Bragg period here is 20 years, which is long compared to the 250 µs period of the tunneling in
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Figure 6.16: Tunneling oscillations for α = 11.2, k̄ = 1.04 (10 µs modulation period). The

corresponding two-state (integrable) tunneling mechanism is 16th-order Bragg scattering, which
has an expected period of 20 years. The observed tunneling rate is clearly much smaller than the
expected Bragg period. The data here were averaged over 10 iterations of the experiment.
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the chaotic case, and is even long compared to the coherence time of a graduate student. Thus,

it is clear that in some sense the chaos enhances the transport, in that the tunnel splittings are

much larger in the chaotic case than in the corresponding integrable case.

Of course, it could be the case that the amplitude modulation enhances the two-level

tunneling rate without the influence of a third, chaotic state, especially in view of the rapid de-

pendence of the Bragg splitting on the lattice intensity. Although we provide additional experi-

mental evidence for chaos-assisted tunneling below, we will now derive a simple estimate for the

direct tunneling rate with the modulation. Since Bragg scattering represents the two-level trans-

port mechanism in this system, and corresponds to a resonantly coupled two-level system if the

proper momentum symmetry condition is satisfied, we can use the well-established solution to

the two-level atom (without damping) exposed to a resonant driving field with time-dependent

intensity [Allen87]. In this case we define the pulse integral,

φ =
∫ t
0

ΩB,n(t′) dt′ , (6.18)

in terms of which the tunneled population can be written as sin2(φ/2) (note that φ = ΩB,nt for

constant drive, as in normal Bragg scattering). Since the tunneling period is substantially longer

than the modulation period, we can simply average the Bragg rate over a modulation period, and

thus the modulation enhances the two-level tunneling rate by a factor∫ 1

0

[2 cos2(πt)]n dt (6.19)

for nth-order transport. This factor is about 50 for the k̄ = 2.08 case and about 9000 for the

k̄ = 1.04 case. Neither of these numerical values is sufficiently large to explain the enormous

differences in the tunneling rates in the integrable and chaotic cases.

6.4.3 Tunneling Dependence on Parameter Variations

To establish that the tunneling in the modulated lattice is chaos-assisted tunneling, it is also

important to examine the dependence of the tunneling as the two experimental parameters (α

and k̄) are varied. As we noted above, the dependence of the tunneling rate should be very

different for direct and chaos-assisted tunneling. In this section, we examine the variation of
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the tunneling as a function of α for two different values of k̄. Operationally, α is a much more

convenient parameter to vary, because it only requires a change in laser intensity, whereas k̄ is

more difficult because it requires changing both the laser intensity and the modulation period (to

keep α fixed) as well as a new set of parameters for the SPASM state preparation (to maintain

the initial condition at the same phase-space location). While we do not necessarily expect
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Figure 6.17: Dependence of the tunneling as the optical-lattice intensity α is varied for k̄ = 2.08
(20 µs modulation period). The color indicates the value of 〈p〉, with black representing the most
negative values and white the most positive. The tunneling is absent at the extreme values of

α shown here, but tunneling oscillations appear in the center of the α range. This behavior is
consistent with the avoided-crossing mechanism for chaos-assisted tunneling. The data here

were averaged over 10 iterations of the experiment.
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to see rapid variations in the tunneling rate as we vary α, due to inhomogeneous broadening

(different atoms see different optical intensities, depending on their transverse location in the

optical lattice, leading to about a 5% spread in α over the atomic sample), there are nevertheless

signatures of three-state tunneling in the data.

The dependence of the tunneling oscillations in the measured evolution of 〈p(t)〉 is

shown in Fig. 6.17 for k̄ = 2.08. Tunneling is visible in the range of α from about 7 to 14, but

is suppressed outside this range. Below this range the tunneling is presumably too slow to be

observed (see the Floquet-spectrum analysis in the next section), and above this range the outer

islands have completely dissolved into the chaotic sea, so that we no longer expect clean tun-

neling to occur. The tunneling rates for this data are plotted in Fig. 6.18. The tunneling rate

does not fluctuate strongly as α changes, but there are two interesting features to notice. The

first is that the tunneling rate decreases as a function of α. This dependence is the opposite

of our expectation of direct tunneling, where as we have seen above the tunneling rate should
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Figure 6.18: Dependence of the tunneling rate on the well depth α, for k̄ = 2.08 (20 µs modula-
tion period). The periods were extracted from the data in Fig. 6.17 using both numerical Fourier

transform and nonlinear fitting techniques. The error bars account for both fitting uncertainty

and the width of the spectral peaks. In the range of α from 8.9 to 10.3, two distinct frequencies
can be resolved in the tunneling data. The zero-frequency data points at the edges of the plot

indicate that no tunneling frequency could be extracted from the data at these locations.
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Figure 6.19: Example of tunneling oscillations from Fig. 6.17, where a single tunneling frequency

persists for the maximumduration of the optical-lattice interaction. The parameters areα = 8.0,
k̄ = 2.08. The data points are connected by lines for clarity.
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Figure 6.20: Example of tunneling oscillations from Fig. 6.17, where two tunneling frequencies

are clearly present. The parameters are α = 9.7, k̄ = 2.08. The data points are connected by
lines for clarity.
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increase with α, following a power-law dependence. This behavior is thus strong evidence that

the tunneling is chaos-assisted, where one or more chaotic levels has a definite influence on the

doublet splitting. The second feature to notice is that two frequencies are clearly resolvable in

the tunneling in a comparatively narrow window in α (from about 8.5 to 10.5). The one- and

two-frequency behaviors of the tunneling are illustrated in Fig. 6.19, where one tunneling fre-

quency is evident (for α = 8.0), and in Fig. 6.20, where the beating of two frequencies is clearly
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Figure 6.21: Dependence of the tunneling as the optical-lattice intensity α is varied for k̄ =
1.04 (10 µs modulation period). The color indicates the value of 〈p〉. The behavior here is

qualitatively similar to the behavior in Fig. 6.17, but the tunneling occurs in a substantially

narrower interval in α. The data were averaged over 10 iterations of the experiment.
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apparent (for α = 9.7). Thus, there is some sensitivity of the tunneling to variations in α in

this regime. This behavior is also consistent with the three-state model near the center of a

singlet-doublet crossing. In this model, the initial wave packet populates a regular state (local-

ized on the islands) and two hybrid states, which have population in both the islands and in the

chaotic sea. There should thus be two frequencies associated with the tunneling, corresponding

to the two splittings between the regular state and the two hybrid states. In general, these two

splittings will not be equal, but should be similar near the center of the avoided crossing, leading

to two-frequency beating in the tunneling dynamics.

The variation of the tunneling behavior in the k̄ = 1.04 case is plotted in Fig. 6.21, with

the extracted tunneling rates plotted in Fig. 6.22. The observed tunneling rates appear to have

weaker dependence on α than in the k̄ = 2.08 case. However, the tunneling is only visible in a

much narrower interval in α, from about 9.5 to 12.5. Thus, in a sense, the tunneling here is more

sensitive to variation in α than in the k̄ = 2.08 case.
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Figure 6.22: Dependence of the tunneling rate on the well depth α, for k̄ = 1.04 (10 µs modula-
tion period). The periods were extracted from the data in Fig. 6.21 using both numerical Fourier

transform and nonlinear fitting techniques. The error bars account for both fitting uncertainty

and the width of the spectral peaks. The zero-frequency data points at the edges of the plot

indicate that no tunneling frequency could be extracted from the data at these locations.
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One question that remains is why the tunneling rate does not go smoothly to zero at the

edges of the α intervals where tunneling is observed, especially at the lower end of the interval

where the tunnel splitting is expected to become very small. In the experiment, the disappear-

ance of the tunneling as α is swept comes about as the oscillations decrease in amplitude and

become damped more quickly, until the oscillations are no longer discernible. One possible ex-

planation is the change in the location of the two islands, which move to larger momentum as α

increases (see the next section for an empirical expression for the island locations). In the exper-

iment, the initial condition was held fixed as α is swept, so that there may have been less overlap

with the tunneling Floquet states if the islands moved too far. However, over the intervals where

tunneling was observed, the islands moved only by ±0.3 · 2�kL for both the k̄ = 2.08 and the

k̄ = 1.04 data sets, which is a substantially smaller amount than the respective σp = 1.7 · 2�kL

and σp = 2.1 · 2�kL momentum uncertainties of the initial conditions in the two cases. Thus,

misalignment of the initial conditions does not account for the disappearance of the tunneling at

the extreme α values here. Another possible explanation lies in a suggestion by [Latka94a] that

three-level tunneling is more robust to a symmetry-breaking interaction than two-level tunnel-

ing. Since the range of populated quasimomenta (and thus the degree of broken symmetry) is

fixed by the Raman velocity selection, the tunneling away from the avoided crossings may simply

disappear, as opposed to being manifested as a slow tunneling oscillation.

6.4.4 Floquet Spectra

In the context of understanding the observed tunneling dependence on α, it is useful to consider

the quasienergy spectrum for this system. Computed spectra for the k̄ = 2.077 and k̄ = 1.039

cases are plotted in Figs. 6.23 and 6.24, respectively. These spectra only show the states with

definite parity, falling on the symmetric ladder of momentum states p = nk̄ (for integer n),

corresponding to zero quasimomentum. The quasienergies were calculated by numerically con-

structing the unitary evolution operator for one period of the modulation and then diagonalizing

the resulting operator. The even and odd tunneling states are also highlighted in these spectra.

These states were identified by finding the states with maximum overlap with a minimum-

uncertainty Gaussian wave packet that was centered on the fixed point of the island and had
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the same aspect ratio as the elliptical trajectories near the fixed point (i.e., where the linearized

equations of motion are valid). The centers of the outer islands are given approximately by the

empirical model

p0 = ±(2π + 0.1988 · α+ 0.002953 · α2 − 0.0000327 · α3) (6.20)

(with x = 0), which is accurate at about the 0.02% level from α = 0 to the critical value αc ≈

11.54 where these islands become unstable and bifurcate into pairs of islands. The aspect ratio

of the elliptic invariant surfaces near the island centers is given approximately by the empirical

model

∆p
∆x

=
√
α(α− αc)(−0.0439 + 0.00151 · α+ 0.0000170 · α2) , (6.21)

which is accurate to the 1% level or better in the same range. The tunneling states are not

identified for α > αc, where it is difficult to assign states to the island remnants.

In the spectrum for k̄ = 2.077, the first avoided crossing (with an even-parity state of

smaller quasienergy) does not occur until about α = 7, where the splitting also first becomes

significant. This behavior is consistent with the experimental data in Fig. 6.17, where tunneling

oscillations are also first observed around α = 7. Beyond this point, the two even-parity states

maintain a similar distance from the odd tunneling state, and this holds true in the regime where

two tunneling frequencies are visible in the data. These two even states then move back towards

each other (and the odd tunneling state) as they interact with two other even states, and this

behavior may explain the decreasing tunneling rate as a function ofα, although it is again difficult

to pinpoint the tunneling states in this regime of large α.

In the k̄ = 1.039 spectrum, the singlet-doublet crossings are much more apparent.

There are several clear avoided crossings involving the tunneling doublet in the range shown,

but it is not until the final avoided crossing before the islands become unstable that the splitting

becomes large enough to observe experimentally. The experimental observation of tunneling be-

ginning with α = 9.5 is thus consistent with the spectrum, although another significant avoided

crossing in the spectrum suggests that tunneling might also be visible in a very narrow region
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around α = 8. The experimental tunneling stops around α = 12.5, where the spectrum has

become quite complicated and the tunneling doublet can no longer be identified.

The tunneling rates from the calculated spectra here are in good agreement with the

observed rates in Figs. 6.18 and 6.22. For example, the two calculated tunneling rates for α = 10

and k̄ = 2.08 are 3.0 kHz and 2.3 kHz, and the calculated tunneling rate for α = 11 and k̄ = 1.04

is 4.0 kHz, all of which match the observed tunneling rates reasonably well. However, it should
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Figure 6.23: Calculated quasienergy spectrum for k̄ = 2.077, corresponding to a 20 µs modula-
tion period. Quasienergies that correspond to states with large momentum (that do not interact

with the states shown in this range of α) are suppressed, and the quasienergies shown are for
the symmetric momentum ladder (zero quasimomentum). The quasienergies for even-parity

Floquet states are shown in green, while the odd-parity states are shown in blue. The even (or-

ange) and odd (red) states with maximal overlap with the outer stable islands are shown, up to

the point where the islands bifurcate, as described in the text. The avoided-crossing behavior

of the tunneling states is apparent over a broad range of α, where two chaotic states have a clear
influence on the tunneling-doublet splitting.
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be noted that while these spectra provide a useful basis for understanding the data, an interpre-

tation based solely on these spectra would most likely be too simplistic to be very useful. An

accurate model would at minimum need to take into account the excitation of multiple Floquet

states by the initial condition, the range of quasimomenta populated after the Raman velocity

selection (as we have done in Fig. 6.10), and the averaging over a range of α due to the transverse

profile of the optical-lattice beam.
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Figure 6.24: Calculated quasienergy spectrum for k̄ = 1.039, corresponding to a 10 µs modula-
tion period. Quasienergies that correspond to states with large momentum (that do not interact

with the states shown in this range of α) are suppressed, and the quasienergies shown are for
the symmetric momentum ladder (zero quasimomentum). The quasienergies for even-parity

Floquet states are shown in green, while the odd-parity states are shown in blue. The even

(orange) and odd (red) states with maximal overlap with the outer stable islands are shown, up

to the point where the islands bifurcate, as described in the text. Several avoided crossings of

the tunneling doublet with chaotic states are apparent, although the splitting only becomes very

large around α = 10.
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6.4.5 High Temporal Resolution Measurements

All of the data so far in this chapter have been sampled only at a particular phase of the peri-

odic driving, corresponding to integer times in the Hamiltonian (6.11). We will now study the

dynamics on a much finer time scale, which will reveal additional interesting aspects of the tun-

neling dynamics. Figs. 6.25 and 6.26 show the tunneling dynamics for k̄ = 2.08 (for two different

values of α), and Fig. 6.27 shows the tunneling dynamics for k̄ = 1.04; in all three figures, the

momentum distribution was sampled 10 times per modulation period, and the duration of the

measurement covers approximately one full period of the amplitude modulation. Besides the

island-tunneling process, which is visible as the slowest oscillation, there are two other oscilla-

tory motions that are common to the three plots. The more obvious of these features appears
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Figure 6.25: Experimental momentum-distribution evolution of chaos-assisted tunneling for

k̄ = 2.08 (T = 20 µs) and α = 7.7. The distribution was sampled every 2 µs out to 400 µs, cov-
ering the first full tunneling oscillation. The classical oscillations (with the same period as the

modulation period) are evident, as well as more complicated oscillations into the intermediate

chaotic/stable region near p = 0. The phase space (see Appendix C) is characterized by the two
(symmetry-related) tunneling islands as well as a doublet of stable islands near p = 0. These
distributions were averaged over 10 iterations of the experiment.
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as a fast oscillation of the initial peak, with the same period as the modulation of the potential.

As the atoms tunnel to the other island, the tunneled peak oscillates in a complementary fash-

ion. This motion can be understood in terms of the classical phase-space dynamics. A particular

phase space for this system assumes a particular sampling phase for the dynamics; for the phase

spaces in Appendix C, the sampling phase is the same as that used for the previous data in this

chapter. To understand the present phenomenon, though, it is necessary to examine the phase

space as the sampling phase varies, as illustrated in Fig. 6.28. Because of the periodic time de-

pendence of the potential, the time parameter acts as a third dimension in phase space. Thus the

islands of stability are “flux tubes” that confine classical trajectories in the higher-dimensional

phase space [Averbukh95], and the islands that appear in the phase plots (Poincaré sections)

are cross sections of the flux tubes. As time varies continuously, then, the islands move in oppo-
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Figure 6.26: Experimental momentum-distribution evolution of chaos-assisted tunneling for k̄ =
2.08 (T = 20 µs) and α = 11.2. The distribution was sampled every 2 µs out to 400 µs, covering
the first full tunneling oscillation. The conditions are otherwise similar to those in Fig. 6.25; the

oscillations in the chaotic region occur in different locations, compared to the previous case. The

phase space (see Appendix C) is characterized by the two (symmetry-related) tunneling islands

with only small remnants of the island near p = 0. These distributions were averaged over 10
iterations of the experiment.
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site directions in phase space according to their mean momenta. Additionally, the islands move

in the momentum direction, becoming furthest apart in momentum for integer sampling times

and closest together for half-integer times. This oscillation is only significant for relatively large

values of α (away from the near-integrable regime), because of the mutual repulsion of the three

primary resonances in phase space. Thus, the fast oscillations of the experimental momentum

distributions can be attributed to the motion of the classical phase-space islands.

The second oscillatory feature is the more relevant effect for demonstrating chaos-

assisted tunneling. This oscillation is slower than the classical oscillation but also is substantially

faster than the tunneling oscillation. It appears as an occasional enhancement of probability in

the (predominantly) chaotic region between the two islands. This effect is particularly dramatic
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Figure 6.27: Experimental momentum-distribution evolution of chaos-assisted tunneling for

k̄ = 1.04 (T = 10 µs) and α = 10.5. The distribution was sampled every 1 µs out to 200 µs,
covering the first full tunneling oscillation. The oscillations in the chaotic region here are more

difficult to see than in Figs. 6.25 and 6.26, because of the smaller signal-to-noise ratio for these

experimental conditions (the horizontal stripes are artifacts of the CCD camera). The phase

space (see Appendix C) is characterized by the two (symmetry-related) tunneling islands with

only small remnants of the island near p = 0. These distributions were averaged over 10 itera-
tions of the experiment.
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in the case of α = 7.7 and k̄ = 2.08 (Fig. 6.25). Here, the first part of the tunneling transport

takes place in (at least) two steps through the chaotic sea, with the first chunk of probability

crossing during the third period of the potential and the second crossing during the fifth and

sixth periods of the potential. The population in the chaotic region is also enhanced at the time

of maximum tunneling, where the population in the islands appears to jump in the center region

for a short time (during the tenth modulation period). Similar behavior is evident for α = 11.2

and k̄ = 2.08 (Fig. 6.26); in this case, this third oscillation is not as pronounced, but is still

present. The details of this oscillation in the chaotic region are also slightly different than in the

previous case. This is especially true at the moment of maximum tunneling, where the atoms

are mostly in the two islands (unlike the case before, where the atoms were mostly in the chaotic

region), but the chaotic region is populated during the modulation periods just before and af-

ter this time. In the case of α = 10.5 and k̄ = 1.04 (Fig. 6.27), this oscillation is less visible

because of the poorer signal/noise ratio (notice that the atoms are spread over a much larger

region in momentum for this value of k̄, resulting in an effectively smaller signal). Nonetheless,

the tunneling again proceeds in chunks, with the transport visible as faint ridges crossing the

chaotic region, especially near the ends of the first, second, fourth, and fifth modulation periods.

The tunneling here in some sense resembles a Landau-Zener crossing [Zener32], because the

population crosses between the islands at the times of closest approach.

This appearance of probability in the chaotic region during the tunneling is precisely

the behavior expected from the picture of chaos-assisted tunneling of [Tomsovic94; Tomsovic01]

that we mentioned above, where tunneling occurs as parts of the wave packet break away from

the initially populated island, transport through the chaotic sea, and then reassemble in the

symmetric destination island. We also recall from the analysis of the three-level model (6.15)

of chaos-assisted tunneling that near the center of the avoided crossing, the tunneling rate is

given by the splitting(s) between the odd-parity regular state taken pairwise with each of the

two even-parity (regular/chaotic hybrid) states, which is of the order β/2. On the other hand, it

is the beating between the two hybrid states that determines the appearance of population in

the chaotic region, and this beating occurs at a rate of order β. Thus, we expect the oscillation of
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population to be substantially faster than the tunneling oscillation. The oscillations observed in

the experiment do not appear to occur with a single frequency, so it may be necessary to include

couplings to other chaotic states in order to account more accurately for this phenomenon.

6.4.6 Transport in the Strongly Coupled Regime

For even larger α than we have considered so far, the two symmetry-related islands of stability

disappear, and the quantum transport undergoes a transition to qualitatively different behavior

than the above tunneling. This strongly coupled behavior is illustrated in Figs. 6.29 and 6.30,

where the momentum-distribution evolution is shown (sampled on a fine time scale) for two

large values of α. For α = 17.0 (Fig. 6.29), the three primary resonances have disappeared,

leaving a chaotic region with only very small stable structures, while for α = 18.9 (Fig. 6.30),
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Figure 6.29: Experimental momentum-distribution evolution of chaos-assisted tunneling for

k̄ = 2.08 (T = 20 µs) and α = 17.0. The distribution was sampled every 2 µs out to 400 µs.
The three primary islands of stability have dissolved into the chaotic region in the classical phase

space for this value of α (see Appendix C). The experimental momentum distributions show er-

ratic oscillations in time. These distributions were averaged over 10 iterations of the experiment.
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there is a small island at the center of the phase space (see Appendix C). The experimental

measurement shows erratic oscillations of the momentum distributions on a faster time scale

than the tunneling observed above.

We can also understand this behavior qualitatively in terms of the Floquet states of the

system. For very small α, the Floquet spectrum consists of nearly degenerate doublets associated

with KAM tori, and as α increases the doublets break apart as their associated invariant structures

become unstable [Utermann94; Kohler98]. In the regime that we consider here, where the

stable structures have disappeared, the splittings are on the order of the mean level spacing

[Kohler98] due to level repulsion of the states in the chaotic region [Haake01]. This behavior

of the splittings is apparent in the spectra in Figs. 6.23 and 6.24. The Floquet states are no

longer well localized in this regime, and thus the initial condition excites several states. The

observed behavior is the result of complicated beating between the various populated states,
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Figure 6.30: Experimental momentum-distribution evolution of chaos-assisted tunneling for k̄ =
2.08 (T = 20 µs) and α = 18.9. The distribution was sampled every 1 µs out to 200 µs. The
two outer islands of stability are not present in the chaotic region in the classical phase space

for this value of α (see Appendix C). The experimental momentum distributions show erratic

oscillations in time. These distributions were averaged over 5 iterations of the experiment.
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and we expect a time dependence that is faster than the tunneling due to the relatively large

splittings involved.

6.5 Noise Effects on Tunneling

The tunneling that we have described here is obviously an effect of quantum coherence, and

tunneling in classically chaotic systems is expected to be suppressed by dissipation [Grobe87;

Kohler98], measurement [Sanders89], and noise [Grossmann93]. Here we consider the effects

of a noisy perturbation of the optical-lattice intensity, so that the atomic center-of-mass Hamil-

tonian becomes

H =
p2

2
− 2α[1 + ς(t)] cos2(πt) cos(x) , (6.22)
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Figure 6.31: Illustration of amplitude noise applied to the optical lattice intensity, as measured

by a fast photodiode. The end of the SPASM state-preparation sequence is visible at the begin-

ning of the traces, where the lattice is ramped up and then remains at a high level for several

µs after the lattice phase is shifted. The sinusoidal modulations begin immediately after the
state preparation, and both the zero (dashed line) and 15.7% (solid line) rms deviation cases are

shown here. The noise effects are most pronounced when the lattice is at the highest average

intensity because the noise deviation is always proportional to the local average intensity. These

traces correspond to the experimental settings for k̄ = 1.04, where the modulation period is 10
µs, and the noise is filtered with a 1MHz cutoff frequency.
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where ς(t) is a randomly fluctuating quantity with a probability distribution peaked at and sym-

metric about zero. This noise signal was generated digitally by picking normally distributed

random deviates with a 10MHz sampling rate. The noise was then bandwidth-limited by a digi-

tal Chebyshev low-pass filter (see Section 6.5.1) before being applied to the AOM control signal.

The cutoff frequency (0.5MHz for the k̄ = 2.08, 20 µs modulation period data, and 1MHz for

the k̄ = 1.04, 10 µs modulation period data) was selected to be well within the 10MHz modu-

lation response of the AOM driver and to make the noise spectrum the same in scaled units for

different modulation periods. The rms noise levels 〈ς2(t)〉1/2 that we quote correspond to the

noise levels after the low-pass filter. Because the instantaneous noise level is proportional to the

mean intensity, truncation effects due to noise deviations falling outside the dynamic range of

the laser were rare except in the largest noise case that we consider here (62% rms). An example

of the optical lattice intensity for one particular realization of the noise is illustrated in Fig. 6.31.

The response of the tunneling oscillations to the noise is illustrated in Fig. 6.32 for
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Figure 6.32: Effects of applied amplitude noise on the tunneling oscillations for α = 11.2 and
k̄ = 2.08. The rms noise levels are 0% (circles), 15.7% (squares), 31% (diamonds), and 62%
(triangles). The tunneling is only completely suppressed at the 62% level, and thus is substan-

tially less sensitive than in the k̄ = 1.04 case in Fig. 6.33. The data were averaged over 10
realizations of noise, and were sampled every 2 modulation periods.
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k̄ = 2.08 and 6.33 for k̄ = 1.04 (α = 11.2 in both cases). As one might expect, the oscillations

are destroyed as the noise level increases, causing damping of the oscillations on progressively

shorter time scales. At the largest levels of noise, classical-like behavior (with noise) is recov-

ered, in that the tunneling oscillations are suppressed. The noise also has the “direct” effect of

causing relaxation to p = 0, because the noise permits transitions, both quantum and classical,

out of the initial island of stability and into the chaotic sea. The more interesting feature of

this data, though, is that because the value of α is fixed between the two measurements and

the tunneling periods are approximately the same (in scaled units), we can compare the sensi-

tivity of the system to the noise for two different values of k̄. From the data we see that the

tunneling oscillations are suppressed at a much lower level of noise for the k̄ = 1.04 case than

in the k̄ = 2.08 case (31% vs. 62% rms). Recalling that k̄ is the dimensionless Planck constant

in scaled units, this comparison indicates that the tunneling in this system is more sensitive to

decoherence as the system moves towards the classical limit (i.e., to a larger action scale com-
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Figure 6.33: Effects of applied amplitude noise on the tunneling oscillations for α = 11.2 and
k̄ = 1.04. The rms noise levels are 0% (circles), 7.9% (squares), 15.7% (diamonds), and 31%
(triangles). The tunneling is completely suppressed at the 31% level, and thus is more sensitive

than in the k̄ = 2.08 case in Fig. 6.32. The data were averaged over 10 realizations of noise, and
were sampled every 2 modulation periods.
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pared to �). This behavior is consistent with theoretical expectations, because for smaller k̄,

the phase-space structure in chaotic systems saturates on a smaller scale [Zurek01], thus being

more easily influenced by decoherence (which causes diffusion in phase space). Related exper-

imental results have demonstrated that Schrödinger-cat superposition states in the phase of a

cavity field [Brune96], in an atom interferometer [Chapman95; Kokorowski01], and in an ion

trap [Turchette00; Myatt00] are more sensitive to decoherence when the separation of the com-

ponents of the state increases (i.e., as the spacing of the interference fringes decreases). The

present experimental results are of a fundamentally different nature, though: while these other

experiments study the decoherence of a superposition state produced by some state-preparation

method, the interferences in the tunneling here are generated dynamically in this nonlinear sys-

tem. It is also interesting to notice that since the applied noise here leads to a fluctuating force

and thus to diffusion of the atomic momenta, this form of noise mimics a continuous measure-

ment of the atomic positions [Dyrting96; Bhattacharya01]. Thus, we might expect that the

system may be more sensitive to noise that mimics a measurement of the atomic momentum,

which would cause diffusion of the atomic position, rather than the momentum.

6.5.1 Chebyshev Filter Response

To more completely characterize the noise used in the experiment, we give a description of the

filter applied to the noise before it was used to control the optical-lattice intensity. The low-pass

Chebyshev filter is specified in terms of three parameters: the cutoff frequency ωc, the orderN ,

and the passband ripple parameter ε. The frequency response of this filter is specified by the

locations of the N poles in the complex s-plane,

sk = − sinh(v0) cos
(
kπ

2N

)
− i cosh(v0) sin

(
kπ

2N

)
, (6.23)

where

v0 =
sinh−1(1/ε)

N
, (6.24)
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for k = (1−N), (3−N), . . . , (N +1) [Parks87]. Thus the complex frequency-transfer function

can be written as

F (s) = η
∏
k

1
s− sk

, (6.25)

where s = −iω/ωc , and η is a normalization factor. The (normalized) squared modulus of the

frequency-response function is then [Parks87]

|F (s)|2 = 1
1 + ε2C2

N(ω/ωc)
, (6.26)

where

CN(ω) = cos(N cos−1(ω)) (6.27)

is the N th-order Chebyshev polynomial. Thus, the normalization factor can be written as

η = (
∏
k sk)/

√
1 + ε2 cos2(Nπ/2). The passband ripple is also commonly specified in terms of

another parameter a, which is expressed in terms of ε as

a = 10 log(1 + ε2) , (6.28)

if a is quoted in (positive) dB.
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Figure 6.34: Plot of the frequency (power) response function |F |2 of the digital Chebyshev filter
used in the experiment, with order N = 4 and 0.1 dB passband ripple.
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In the experiment, a white noise series (i.e., a series of independent, normally dis-

tributed, random deviates) was generated at the 10 MHz sampling rate of the Agilent 33250A

waveform synthesizer that controlled the 1D optical lattice intensity. To avoid unattainably large

deviations, the Gaussian distribution of these deviates was truncated beyond three standard de-

viations. The waveform was then filtered using the built-in function in LabView. For the k̄ = 1

(10 µs modulation period) case, the 1MHz cutoff frequency resulted in an effective reduction

of the rms deviation of the waveform by a factor of about 0.4965. To produce equivalent noise

levels in the k̄ = 2 (20 µs modulation period) case, where the cutoff frequency was 500 kHz, the

noise level was first multiplied by
√
2, thus compensating for the different ratio of the sampling

frequency to the cutoff frequency.
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Appendix A

Cesium D Line Data

A.1 Overview

In this appendixwe reviewmany of the physical and optical properties of cesium that are relevant

to the experiments in this dissertation. In particular, we give parameters that are useful in

treating the mechanical effects of light on cesium atoms. The atomic parameters for the D1 and

D2 optical transitions are given, although only the D2 transition values are relevant to the work

in this dissertation. The measured numbers are given with their original references, and the

calculated numbers are presented with an overview of their origin along with references to more

comprehensive discussions of their underlying theory.

A.2 Cesium Physical and Optical Properties

Some useful fundamental physical constants are given in Table A.1. The values given are the

1998 CODATA recommended values, as listed in [Mohr00]. Some of the overall physical prop-

erties of cesium are given in Table A.2. Cesium has 55 electrons, only one of which is in the

outermost shell. 133Cs is the only stable isotope of cesium, and is the only isotope we consider

in this reference. The mass is taken from the high-precision measurement of [Bradley99], and

the density, melting point, boiling point, and heat capacities are taken from [Lide00]. The va-

por pressure at 25◦C and the vapor pressure curve in Fig. A.1 are taken from the vapor pressure

model given by [Nesmeyanov63], which is

log10 Pv = −219.482 00 + 1088.676
T

− 0.083 361 85 T + 94.887 52 log10 T (solid phase)

log10 Pv = 8.221 27−
4006.048
T

− 0.000 601 94 T − 0.196 23 log10 T (liquid phase),

(A.1)

where Pv is the vapor pressure in torr, and T is the temperature in K. The ionization limit is the

minimum energy required to ionize a cesium atom; this value is taken from Ref. [Weber87].
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The optical properties of the cesium D line are given in Tables A.3 and A.4. The prop-

erties are given separately for each of the two D-line components; the D2 line (the 62S1/2 −→
62P3/2 transition) properties are given in Table A.3, and the optical properties of the D1 line

(the 62S1/2 −→ 62P1/2 transition) are given in Table A.4. Of these two components, the D2

transition is of much more relevance to current quantum and atom optics experiments, because

it has a cycling transition that is used for cooling and trapping cesium. The frequencies ω0 of the

transitions were measured using an optical frequency comb [Udem00; Udem99]; the vacuum

wavelengths λ and the wave numbers kL are then determined via the following relations:

λ =
2πc

ω0
kL =

2π

λ
. (A.2)

The air wavelength λair = λ/n assumes index of refraction of n = 1.000 268 21, corresponding

to dry air at a pressure of 760 torr and a temperature of 22◦C. The index of refraction is calculated

from the Edlén formula [Edlén66]:

nair = 1 +
[(

8342.13 +
2 406 030
130 − κ2

+
15 997

38.9− κ2

)

×
(

0.001 388 23 P

1 + 0.003 671 T

)
− f

(
5.722− 0.0457κ2

)]
× 10−8 .

(A.3)

Here, P is the air pressure in torr, T is the temperature in ◦C, κ is the vacuum wave number

kL/2π in µm−1, and f is the partial pressure of water vapor in the air, in torr. This formula is

appropriate for laboratory conditions and has an estimated uncertainty of ≤ 10−8. The lifetime

is an average of two recent measurements; the first [Rafac99] used a fast beam laser technique,

yielding lifetimes of 35.07(10) ns for the 62P1/2 state and 30.57(7) ns for the 62P3/2 state, while

the second [Young94] used a photon-counting method, giving lifetimes of 34.75(7) ns (62P1/2)

and 30.41(10) ns (62P3/2) state. The former measurement is taken to supersede several mea-

surements by some of the same experimenters using the same technique [Rafac94; Tanner92],

and another measurement of comparable quoted uncertainty (29.9(2) ns for the 62P3/2 state)

[Rydberg72] is excluded because of a substantial disagreement with all recent precision mea-

surements [Rafac99]. Another precise measurement of the ratios of the D1 and D2 transition

strengths [Rafac98] was not accounted for in the values quoted here. A general discussion of

precision lifetime measurement methods can be found in [Tanner95]. Inverting the lifetime

gives the decay rate, which is also the natural (homogenous) line width of the emitted radiation.

The recoil velocity vr is the change in the cesium atomic velocity when absorbing or

emitting a resonant photon, and is given by

vr =
�kL

m
. (A.4)
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The recoil energy �ωr is defined as the kinetic energy of an atom moving with velocity v = vr,

which is

�ωr =
�
2k2

L

2m
. (A.5)

The Doppler shift of an incident light field of frequency ωL due to motion of the atom is

∆ωd =
vatom

c
ωL (A.6)

for small atomic velocities relative to c. For an atomic velocity vatom = vr, the Doppler shift is

simply 2ωr. Finally, if one wishes to create a standing wave that is moving with respect to the lab

frame, the two traveling-wave components must have a frequency difference determined by the

relation

vsw =
∆ωsw

2π

λ

2
, (A.7)

because ∆ωsw/2π is the beat frequency of the two waves, and λ/2 is the spatial periodicity of

the standing wave. For a standing wave velocity of vr, Eq. (A.7) gives ∆ωsw = 4ωr.

A.3 Hyperfine Structure

A.3.1 Energy Level Splittings

The 62S1/2 −→ 62P3/2 and 62S1/2 −→ 62P1/2 transitions are the components of a fine-

structure doublet, and each of these transitions additionally have hyperfine structure. The fine

structure is a result of the coupling between the orbital angular momentum L of the outer elec-

tron and its spin angular momentum S. The total electron angular momentum is then given

by

J = L + S , (A.8)

and the corresponding quantum number J must lie in the range

|L − S| ≤ J ≤ L + S . (A.9)

(Here we use the convention that the magnitude of J is
√

J(J + 1)�, and the eigenvalue of Jz

is mJ�.) For the ground state in cesium, L = 0 and S = 1/2, so J = 1/2; for the first excited

state, L = 1, so J = 1/2 or J = 3/2. The energy of any particular level is shifted according to

the value of J , so the L = 0 −→ L = 1 (D line) transition is split into two components, the D1

line (62S1/2 −→ 62P1/2) and the D2 line (62S1/2 −→ 62P3/2). The meaning of the energy level

labels is as follows: the first number is the principal quantum number of the outer electron, the

superscript is 2S +1, the letter refers to L (i.e. S ↔ L = 0, P ↔ L = 1, etc.), and the subscript

gives the value of J .
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The hyperfine structure is a result of the coupling of J with the total nuclear angular

momentum I. The total atomic angular momentum F is then given by

F = J + I . (A.10)

As before, the magnitude of F can take the values

|J − I| ≤ F ≤ J + I . (A.11)

For the cesium ground state, J = 1/2 and I = 7/2, so F = 3 or F = 4. For the excited state

of the D2 line (62P3/2), F can take any of the values 2, 3, 4, or 5, and for the D1 excited state

(62P1/2), F is either 3 or 4. Again, the atomic energy levels are shifted according to the value of

F .

Because the fine structure splitting in cesium is large enough to be resolved by many

lasers (∼ 42 nm), the two D-line components are generally treated separately. The hyperfine

splittings, however, are much smaller, and it is useful to have some formalism to describe the

energy shifts. The Hamiltonian that describes the hyperfine structure for each of the D-line

components is [Corney77; Arimondo77]

Hhfs = AhfsI · J + Bhfs

3(I · J)2 + 3
2I · J− I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
, (A.12)

which leads to a hyperfine energy shift of

∆Ehfs =
1
2
AhfsK + Bhfs

3
2
K(K + 1) − 2I(I + 1)J(J + 1)

2I(2I − 1)2J(2J − 1)
, (A.13)

where

K = F (F + 1) − I(I + 1) − J(J + 1) , (A.14)

Ahfs is the magnetic dipole constant, and Bhfs is the electric quadrupole constant (although the

term with Bhfs applies only to the excited manifold of the D2 transition and not to the levels

with J = 1/2). These constants for the cesium D line are listed in Table A.5. The value

for the ground state Ahfs constant is the recommended value from Ref. [Arimondo77]. The

constants listed for the 62P3/2 manifold were taken from amore recent and precise measurement

by Tanner and Wieman [Tanner88a]. The Ahfs constant for the 62P1/2 manifold is a weighted

average of a frequency-comb measurement (Ahfs = 291.922(20)MHz) [Udem99] and a crossed-

beam laser spectroscopy measurement (Ahfs = 291.89(8) MHz) [Rafac97]. The energy shift

given by (A.13) is relative to the unshifted value (the “center of gravity”) listed in Table A.3.

The hyperfine structure of the D2 line, along with the energy splitting values, is diagrammed in

Fig. A.2.
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A.3.2 Interaction with Static External Fields

A.3.2.1 Magnetic Fields

Each of the hyperfine (F ) energy levels contains 2F + 1 magnetic sublevels that determine

the angular distribution of the electron wave function. In the absence of external magnetic

fields, these sublevels are degenerate. However, when an external magnetic field is applied, their

degeneracy is broken. The Hamiltonian describing the atomic interaction with the magnetic

field is

HB =
µB

�
(gSS + gLL + gII) · B

=
µB

�
(gSSz + gLLz + gIIz)Bz ,

(A.15)

if we take the magnetic field to be along the z-direction (i.e., along the atomic quantization

axis). In this Hamiltonian, the quantities gS, gL, and gI are respectively the electron spin, elec-

tron orbital, and nuclear “g-factors” that account for various modifications to the corresponding

magnetic dipole moments. The values for these factors are listed in Table A.6, with the sign

convention of [Arimondo77]. The value for gS has been measured very precisely, and the value

given is the CODATA recommended value. The value for gL is approximately 1, but to account

for the finite nuclear mass, the quoted value is given by

gL = 1 − me

mnuc
, (A.16)

which is correct to lowest order in me/mnuc , where me is the electron mass and mnuc is the

nuclear mass [Bethe57]. The nuclear factor gI accounts for the entire complex structure of the

nucleus, and so the quoted value is an experimental measurement [Arimondo77].

If the energy shift due to the magnetic field is small compared to the fine-structure

splitting, then J is a good quantum number and the interaction Hamiltonian can be written as

HB =
µB

�
(gJJz + gIIz)Bz . (A.17)

Here, the Landé factor gJ is given by [Bethe57]

gJ = gL

J(J + 1) − S(S + 1) + L(L + 1)
2J(J + 1)

+ gS

J(J + 1) + S(S + 1) − L(L + 1)
2J(J + 1)

	 1 +
J(J + 1) + S(S + 1) − L(L + 1)

2J(J + 1)
,

(A.18)

where the second, approximate expression comes from taking the approximate values gS 	 2 and

gL 	 1. The expression here does not include corrections due to the complicated multielectron

structure of cesium [Bethe57] and QED effects [Labzowsky99], so the values of gJ given in

Table A.6 are experimental measurements [Arimondo77].
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If the energy shift due to the magnetic field is small compared to the hyperfine split-

tings, then similarly F is a good quantum number, so the interaction Hamiltonian becomes

[Kleinpoppen97]

HB = µB gF Fz Bz , (A.19)

where the hyperfine Landé g-factor is given by

gF = gJ

F (F + 1)− I(I + 1) + J(J + 1)
2F (F + 1)

+ gI

F (F + 1) + I(I + 1)− J(J + 1)
2F (F + 1)

� gJ

F (F + 1)− I(I + 1) + J(J + 1)
2F (F + 1)

.

(A.20)

The second, approximate expression here neglects the nuclear term, which is a correction at the

level of 0.1%, since gI is much smaller than gJ .

For weakmagnetic fields, the interaction HamiltonianHB perturbs the zero-field eigen-

states ofHhfs. To lowest order, the levels split linearly according to [Corney77]

∆E|F mF 〉 = µB gF mF Bz . (A.21)

The approximate gF factors computed from Eq. (A.20) and the corresponding splittings between

adjacent magnetic sublevels are given in Fig. A.2. The splitting in this regime is called the

anomalous Zeeman effect.

For strong fields where the appropriate interaction is described by Eq. (A.17), the in-

teraction term dominates the hyperfine energies, so that the hyperfine Hamiltonian perturbs

the strong-field eigenstates |J mJ I mI〉. The energies are then given to lowest order by

[Alexandrov93]

E|J mJ I mI 〉 = AhfsmJmI

+Bhfs

3(mJmI)2 + 3
2
mJmI − I(I + 1)J(J + 1)

2J(2J − 1)I(2I − 1)

+ µB(gJ mJ + gImI)Bz .

(A.22)

The energy shift in this regime is called the Paschen-Back effect.

For intermediate fields, the energy shift is more difficult to calculate, and in general one

must numerically diagonalizeHhfs+HB. A notable exception is the Breit-Rabi formula [Breit31;

Kleinpoppen97; Corney77], which applies to the ground-state manifold of the D transition:

E|J=1/2mJ I mI〉 = − ∆Ehfs

2(2I + 1)
+ gI µBmB ± ∆Ehfs

2

(
1 +

4mx
2I + 1

+ x2
)1/2

. (A.23)
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In this formula, ∆Ehfs = Ahfs(I + 1/2) is the hyperfine splitting, m = mI ±mJ = mI ± 1/2
(where the ± sign is taken to be the same as in (A.23)), and

x =
(gJ − gI)µBB

∆Ehfs
. (A.24)

In order to avoid a sign ambiguity in evaluating (A.23), the more direct formula

E|J=1/2mJ I mI〉 = ∆Ehfs
I

2I + 1
± 1
2
(gJ + 2IgI)µB B (A.25)

can be used for the two statesm = ±(I + 1/2). The Breit-Rabi formula is useful in finding the
small-field shift of the “clock transition” between the mF = 0 sublevels of the two hyperfine

ground states, which has no first-order Zeeman shift. Using m = mF for small magnetic fields,

we obtain

∆ωclock =
(gJ − gI)2µ2B
2�∆Ehfs

B2 (A.26)

to second order in the field strength.

If the magnetic field is sufficiently strong that the hyperfine Hamiltonian is negligible

compared to the interaction Hamiltonian, then the effect is termed the normal Zeeman effect

for hyperfine structure. For even stronger fields, there are Paschen-Back and normal Zeeman

regimes for the fine structure, where states with different J can mix, and the appropriate form

of the interaction energy is Eq. (A.15). Yet stronger fields induce other behaviors, such as the

quadratic Zeeman effect [Kleinpoppen97], which are beyond the scope of the present discus-

sion.

The level structure of cesium in the presence of a magnetic field is shown in Figs. A.4-

A.6 in the weak-field (anomalous Zeeman) regime through the hyperfine Paschen-Back regime.

A.3.2.2 Electric Fields

An analogous effect, the dc Stark effect, occurs in the presence of a static external electric field.

The interaction Hamiltonian in this case is [Armstrong71; Schmieder71; Schmieder72]

HE = −1
2
α0E

2
z −

1
2
α2E

2
z

3J2z − J(J + 1)
J(2J − 1) , (A.27)

where we have taken the electric field to be along the z-direction, α0 and α2 are respectively

termed the scalar and tensor polarizabilities, and the second (α2) term is nonvanishing only for

the J = 3/2 level. The first term shifts all the sublevels with a given J together, so that the Stark

shift for the J = 1/2 states is trivial. The only mechanism for breaking the degeneracy of the

hyperfine sublevels in (A.27) is the Jz contribution in the tensor term. This interaction splits

the sublevels such that sublevels with the same value of |mF | remain degenerate. An expression
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for the hyperfine Stark shift, assuming a weak enough field that the shift is small compared to

the hyperfine splittings, is [Armstrong71]

∆E|J I F mF 〉 = −1
2
α0E

2
z

− 1
2
α2E

2
z

[3m2
F
− F (F + 1)][3X(X − 1) − 4F (F + 1)J(J + 1)]
(2F + 3)(2F + 2)F (2F − 1)J(2J − 1) ,

(A.28)

where

X = F (F + 1) + J(J + 1)− I(I + 1) . (A.29)

For stronger fields, when the Stark interaction Hamiltonian dominates the hyperfine splittings,

the levels split according to the value of |mJ |, leading to an electric-field analog to the Paschen-
Back effect for magnetic fields.

The static polarizability is also useful in the context of optical traps that are very far off

resonance (i.e., several to many nm away from resonance, where the rotating-wave approximation

is invalid), since the optical potential is given in terms of the ground-state polarizability as V =

−1/2α0E2, whereE is the amplitude of the optical field. A more accurate expression for the far-

off resonant potential arises by replacing the static polarizability with the frequency-dependent

polarizability [Miller00]

α0(ω) =
(�ω0)2α0

(�ω0)2 − (�ω)2
, (A.30)

where ω0 is the resonant frequency of the lowest-energy transition (i.e., the D1 resonance); this

approximate expression is valid for light tuned to the red of the D1 line.

The cesium polarizabilities are tabulated in Table A.6. Notice that the differences in

the excited state and ground state scalar polarizabilities are given, rather than the excited state

polarizabilities, since these are the quantities that were actually measured experimentally. The

polarizabilities given here are in SI units, although they are often given in cgs units (units of

cm3) or atomic units (units of a30, where the Bohr radius a0 is given in Table A.1). The SI values

can be converted to cgs units via α[cm3] = 5.95531 × 10−22 α[Hz/(V/cm)2] [Miller00], and

subsequently the conversion to atomic units is straightforward.

The level structure of cesium in the presence of an external dc electric field is shown

in Fig. A.7 in the weak-field regime through the electric hyperfine Paschen-Back regime.

A.3.3 Reduction of the Dipole Operator

The strength of the interaction between cesium and nearly-resonant optical radiation is charac-

terized by the dipole matrix elements. Specifically, 〈F mF |er|F ′ m′F 〉 denotes the matrix ele-
ment that couples the two hyperfine sublevels |F mF 〉 and |F ′ m′F 〉 (where the primed variables
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refer to the excited states and the unprimed variables refer to the ground states). To calculate

these matrix elements, it is useful to factor out the angular dependence and write the matrix

element as a product of a Clebsch-Gordan coefficient and a reduced matrix element, using the

Wigner-Eckart theorem [Brink62]:

〈F mF |erq|F ′ m′F 〉 = 〈F ‖er‖F ′〉〈F mF |F ′ 1 m′F q〉 . (A.31)

Here, q is an index labeling the component of r in the spherical basis, and the doubled bars

indicate that the matrix element is reduced. We can also write (A.31) in terms of a Wigner 3-j

symbol as

〈F mF |erq|F ′ m′F 〉 = 〈F ‖er‖F ′〉(−1)F
′−1+mF

√
2F + 1

(
F ′ 1 F
m′F q −mF

)
. (A.32)

Notice that the 3-j symbol (or, equivalently, the Clebsch-Gordan coefficient) vanishes unless

the sublevels satisfy mF = m′F + q. This reduced matrix element can be further simplified

by factoring out the F and F ′ dependence into a Wigner 6-j symbol, leaving a further reduced

matrix element that depends only on the L, S, and J quantum numbers [Brink62]:

〈F ‖er‖F ′〉 ≡ 〈J I F ‖er‖J ′ I′ F ′〉

= 〈J‖er‖J ′〉(−1)F ′+J+1+I
√
(2F ′ + 1)(2J + 1)

{
J J ′ 1
F ′ F I

}
.

(A.33)

Again, this new matrix element can be further factored into another 6-j symbol and a reduced
matrix element involving only the L quantum number:

〈J‖er‖J ′〉 ≡ 〈L S J‖er‖L′ S′ J ′〉

= 〈L‖er‖L′〉(−1)J′+L+1+S
√
(2J ′ + 1)(2L+ 1)

{
L L′ 1
J ′ J S

}
.

(A.34)

The numerical value of the 〈J = 1/2‖er‖J ′ = 3/2〉 (D2) and the 〈J = 1/2‖er‖J ′ = 1/2〉
(D1) matrix elements are given in Table A.7. These values were calculated from the expression

[Loudon83]
1
τ
=

ω3

3πε0�c3
2J + 1
2J ′ + 1

|〈J‖er‖J ′〉|2 . (A.35)

Note that all the equations we have presented here assume the normalization convention∑
M ′

|〈J M |er|J ′ M ′〉|2 =
∑
M ′q

|〈J M |erq|J ′ M ′〉|2 = |〈J‖er‖J ′〉|2 . (A.36)

There is, however, another common convention (used in Ref. [Tanner95]) that is related to the

convention used here by (J‖er‖J ′) =
√
2J + 1 〈J‖er‖J ′〉.

The dipole matrix elements for specific |F mF 〉 −→ |F ′ m′
F
〉 transitions are listed

in Tables A.9-A.20 as multiples of 〈J‖er‖J ′〉. The tables are separated by the ground-state F
number (3 or 4) and the polarization of the transition (where σ+-polarized light couplesmF −→
m′F = mF + 1, π-polarized light couples mF −→ m′F = mF , and σ

−-polarized light couples

mF −→ m′
F
= mF − 1).
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A.4 Resonance Fluorescence

A.4.1 Symmetries of the Dipole Operator

Although the hyperfine structure of cesium is quite complicated, it is possible to take advantage

of some symmetries of the dipole operator in order to obtain relatively simple expressions for

the photon scattering rates due to resonance fluorescence. In the spirit of treating the D1 and

D2 lines separately, we will discuss the symmetries in this section implicitly assuming that the

light is interacting with only one of the fine-structure components at a time. First, notice that

the matrix elements that couple to any single excited state sublevel |F ′ m′
F
〉 add up to a factor

that is independent of the particular sublevel chosen,

∑
q F

|〈F (m′F + q)|erq|F ′ m′F 〉|2 =
2J + 1
2J ′ + 1

|〈J‖er‖J ′〉|2 , (A.37)

as can be verified from the dipole matrix element tables. This factor of (2J+1)/(2J ′+1) (which

is 1 for the D1 line or 1/2 for the D2 line) is the same factor that appears in Eq. (A.35), and is

a consequence of the normalization convention (A.36). The interpretation of this symmetry is

simply that all the excited state sublevels decay at the same rate Γ, and the decaying population

“branches” into various ground state sublevels.

Another symmetry arises from summing the matrix elements from a single ground-state

sublevel to the levels in a particular F ′ energy level:

SFF ′ :=
∑
q

(2F ′ + 1)(2J + 1)
{
J J ′ 1
F ′ F I

}2
|〈F mF |F ′ 1 (mF − q) q〉|2

= (2F ′ + 1)(2J + 1)
{
J J ′ 1
F ′ F I

}2
.

(A.38)

This sum SFF ′ is independent of the particular ground state sublevel chosen, and also obeys the

sum rule ∑
F ′

SFF ′ = 1. (A.39)

The interpretation of this symmetry is that for an isotropic pump field (i.e. a pumping field with

equal components in all three possible polarizations), the coupling to the atom is independent

of how the population is distributed among the sublevels. These factors SFF ′ (which are listed

in Table A.8) provide a measure of the relative strength of each of the F −→ F ′ transitions. In

the case where the incident light is isotropic and couples two of the F levels, the atom can be

treated as a two-level atom, with an effective dipole moment given by

|diso,eff(F −→ F ′)|2 = 1
3
SFF ′ |〈J ||er||J ′〉|2 . (A.40)
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The factor of 1/3 in this expression comes from the fact that any given polarization of the field

only interacts with one (of three) components of the dipole moment, so that it is appropriate to

average over the couplings rather than sum over the couplings as in (A.38).

When the light is detuned far from the atomic resonance (∆ � Γ), the light interacts

with several hyperfine levels. If the detuning is large compared to the excited-state frequency

splittings, then the appropriate dipole strength comes from choosing any ground state sublevel

|F mF 〉 and summing over its couplings to the excited states. In the case of π-polarized light,
the sum is independent of the particular sublevel chosen:

∑
F ′

(2F ′ + 1)(2J + 1)
{
J J ′ 1
F ′ F I

}2
|〈F mF |F ′ 1 mF 0〉|2 =

1
3
. (A.41)

This sum leads to an effective dipole moment for far detuned radiation given by

|ddet,eff|2 =
1
3
|〈J ||er||J ′〉|2 . (A.42)

The interpretation of this factor is also straightforward. Because the radiation is far detuned, it

interacts with the full J −→ J ′ transition; however, because the light is linearly polarized, it

interacts with only one component of the dipole operator. Then, because of spherical symmetry,

|d̂|2 ≡ |er̂|2 = e2(|x̂|2 + |ŷ|2 + |ẑ|2) = 3e2|ẑ|2. Note that this factor of 1/3 also appears for
σ± light, but only when the sublevels are uniformly populated (which, of course, is not the

equilibrium configuration for these polarizations). The effective dipole moments for this case

and the case of isotropic pumping are given in Table A.7.

A.4.2 Resonance Fluorescence in a Two-Level Atom

In these two cases, where we have an effective dipole moment, the atoms behave like simple

two-level atoms. A two-level atom interacting with a monochromatic field is described by the

optical Bloch equations [Loudon83],

ρ̇gg =
iΩ
2
(ρ̃ge − ρ̃eg) + Γρee

ρ̇ee = − iΩ
2
(ρ̃ge − ρ̃eg) − Γρee

˙̃ρge = −(γ + i∆)ρ̃ge −
iΩ
2
(ρee − ρgg) ,

(A.43)

where the ρij are the matrix elements of the density operator ρ := |ψ〉〈ψ|, Ω := −d ·E0/� is

the resonant Rabi frequency, d is the dipole operator, E0 is the electric field amplitude (E =

E0 cosωLt), ∆ := ωL −ω0 is the detuning of the laser field from the atomic resonance, Γ = 1/τ

is the natural decay rate of the excited state, γ := Γ/2 + γc is the “transverse” decay rate

(where γc is a phenomenological decay rate that models collisions), ρ̃ge := ρge exp(−i∆t) is a
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“slowly varying coherence,” and ρ̃ge = ρ̃∗eg. In writing down these equations, we have made

the rotating-wave approximation and used a master-equation approach to model spontaneous

emission. Additionally, we have ignored any effects due to the motion of the atom and decays

or couplings to other auxiliary states. In the case of purely radiative damping (γ = Γ/2), the

excited state population settles to the steady state solution

ρee(t→ ∞) = (Ω/Γ)2

1 + 4 (∆/Γ)2 + 2 (Ω/Γ)2
. (A.44)

The (steady state) total photon scattering rate (integrated over all directions and frequencies)

is then given by Γρee(t→ ∞):

Rsc =
(
Γ
2

)
(I/Isat)

1 + 4 (∆/Γ)2 + (I/Isat)
. (A.45)

In writing down this expression, we have defined the saturation intensity Isat such that

I

Isat
= 2
(
Ω
Γ

)2
, (A.46)

which gives (with I = (1/2)cε0E 2
0 )

Isat =
cε0Γ2�2

4|ε̂ · d|2 , (A.47)

where ε̂ is the unit polarization vector of the light field, and d is the atomic dipole moment.

With Isat defined in this way, the on-resonance scattering cross section σ, which is proportional

to Rsc(∆ = 0)/I, drops to 1/2 of its weakly pumped value σ0 when I = Isat. Additionally,

the saturation intensity depends on the polarization of the pumping light as well as the atomic

alignment, although the smallest saturation intensity (Isat(mF =±4→m′
F =±5), discussed below)

is often quoted as a representative value. Some saturation intensities corresponding to the dis-

cussions in Section A.4.1 are given in Table A.7. A more detailed discussion of the resonance

fluorescence from a two-level atom, including the spectral distribution of the emitted radiation,

can be found in Ref. [Loudon83].

A.4.3 Optical Pumping

If none of the special situations in Section A.4.1 applies to the fluorescence problem of inter-

est, then the effects of optical pumping must be accounted for. A discussion of the effects of

optical pumping in an atomic vapor on the saturation intensity using a rate-equation approach

can be found in Ref. [Sagle96]. Here, however, we will carry out an analysis based on the gen-

eralization of the optical Bloch equations (A.43) to the degenerate level structure of cesium.

The appropriate master equation for the density matrix of a Fg → Fe hyperfine transition is
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[Steck98; Kennedy94; Cohen-Tannoudji77; Gao93]

∂

∂t
ρ̃α mα , β mβ = − i

2


δαe∑

mg

Ω(mα, mg) ρ̃g mg, β mβ−

δgβ
∑
me

Ω(me, mβ) ρ̃α mα, e me

+ δαg
∑
me

Ω∗(me, mα) ρ̃e me, β mβ−

δeβ
∑
mg

Ω∗(mβ , mg) ρ̃α mα, g mg







(pump field)

− δαeδeβ Γ ρ̃α mα, β mβ

− δαeδgβ
Γ
2
ρ̃α mα, β mβ

− δαgδeβ
Γ
2
ρ̃α mα, β mβ

+ δαgδgβ Γ
1∑

q=−1

[
ρ̃e (mα+q), e (mβ+q)

×〈Fe (mα + q)|Fg 1 mα q〉

×〈Fe (mβ + q)|Fg 1 mβ q〉
]




(dissipation)

+ i(δαeδgβ − δαgδeβ) ∆ ρ̃α mα, β mβ

}
(free evolution)

(A.48)

where

Ω(me, mg) = (−1)me−mg 〈Fe me|Fg 1 mg (me −mg)〉 Ω−(me−mg) (A.49)

is the Rabi frequency between two magnetic sublevels,

Ω−q = −
2〈Fe||er||Fg〉E(+)

−q
�

(A.50)

is the overall Rabi frequency with polarization (−q) (E(+)
−q is the field amplitude associated

with the positive-rotating component, with polarization (−q) in the spherical basis), and δ is

the Kronecker delta symbol. This master equation ignores coupling to F levels other than the

ground (g) and excited (e) levels; hence, this equation is appropriate for a cycling transition such

as F = 4 −→ F ′ = 5. Additionally, this master equation assumes purely radiative damping and,

as before, does not describe the motion of the atom.

To calculate the scattering rate from a Zeeman-degenerate atom, it is necessary to solve

the master equation for the steady-state populations. Then, the total scattering rate is given by

Rsc = ΓPe = Γ
∑
me

ρe me , e me , (A.51)
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where Pe is the total population in the excited state. In addition, by including the branching

ratios of the spontaneous decay, it is possible to account for the polarization of the emitted

radiation. Defining the scattering rate Rsc, −q for the polarization (−q), we have

Rsc, −q =
∑
me mg

|〈Fe me|Fg 1 mg q〉|2ρe me , e me , (A.52)

where, as before, the only nonzero Clebsch-Gordan coefficients occur for me = mg + q. As we

have defined it here, q = ±1 corresponds to σ±-polarized radiation, and q = 0 corresponds to

π-polarized radiation. The angular distribution for the σ± scattered light is simply the classical

radiation pattern for a rotating dipole,

f ±sc (θ, φ) =
3
16π

(1 + cos2 θ) , (A.53)

and the angular distribution for the π-scattered light is the classical radiation pattern for an

oscillating dipole,

f 0
sc(θ, φ) =

3
8π
sin2 θ . (A.54)

The net angular pattern will result from the interference of these three distributions.

In general, this master equation is difficult to treat analytically, and even a numeri-

cal solution of the time-dependent equations can be time-consuming if a large number of de-

generate states are involved. In the following discussions, we will only consider some simple

light configurations interacting with the F = 4 −→ F ′ = 5 cycling transition that can be

treated analytically. Discussions of Zeeman-degenerate atoms and their spectra can be found in

Refs. [Gao93; Gao94a; Gao94b; Polder76; Javanainen92].

A.4.3.1 Circularly (σ±) Polarized Light

The cases where the atom is driven by either σ+ or σ− light (i.e. circularly polarized light with

the atomic quantization axis aligned with the light propagation direction) are straightforward

to analyze. In these cases, the light transfers its angular momentum to the atom, and thus the

atomic population is transferred to the state with the largest corresponding angular momentum.

In the case of the F = 4 −→ F ′ = 5 cycling transition, a σ+ driving field will transfer all

the atomic population into the |F = 4, mF = 4〉 −→ |F ′ = 5, m′
F
= 5〉 cycling transition,

and a σ− driving field will transfer all the population into the |F = 4, mF = −4〉 −→ |F ′ =
5, m′F = −5〉 cycling transition. In both cases, the dipole moment d(mF =±4→mF =±5) is given

in Table A.7. Note that these dipole moments are only valid in steady state. If the pumping

field is weak, the “settling time” of the atom to its steady state can be long, resulting in a time-

dependent effective dipole moment (and saturation intensity). For example, beginning with a

uniform sublevel population in the F = 4 ground level, the saturation intensity will begin at 2.70

mW/cm2 and equilibrate at 1.10 mW/cm2 for a circularly polarized pump. Also, if there are any
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“remixing” effects such as collisions or magnetic fields not aligned with the axis of quantization,

the system may equilibrate to some other configuration.

A.4.3.2 Linearly (π) Polarized Light

If the light is π-polarized (linearly polarized along the quantization axis), the equilibrium pop-

ulation distribution is more complicated. In this case, the atoms tend to accumulate in the

sublevels near m = 0. Gao [Gao93] has derived analytic expressions for the equilibrium pop-

ulations of each sublevel and showed that the equilibrium excited-state population is given by

Eq. (A.44) if Ω2 is replaced by

gS(2Fe + 1)|Ω0|2 , (A.55)

where Ω0 is the only nonzero component of the Rabi-frequency vector and gS is a (constant)

geometric factor that accounts for the optical pumping. For the cesium F = 4 −→ F ′ = 5

cycling transition, this factor has the value gS = 4420/92377 ≈ 0.04785, leading to a steady-

state saturation intensity of Isat = 1.71 mW/cm2.

A.4.3.3 One-Dimensional σ+ − σ− Optical Molasses

We now consider the important case of an optical molasses in one dimension formed by one

σ+ and one σ− field (e.g., by two right-circularly polarized, counterpropagating laser fields).

These fields interfere to form a field that is linearly polarized, where the polarization vector

traces out a helix in space. Because the light is linearly polarized everywhere, and the steady-

state populations are independent of the polarization direction (in the plane orthogonal to the

axis of quantization), the analysis of the previous section applies. When we apply the formula

(A.45) to calculate the scattering rate, then, we simply use the saturation intensity calculated in

the previous section, and use the total intensity (twice the single-beam intensity) for I in the

formula.

A.4.3.4 Three-Dimensional Optical Molasses

Finally, we consider an optical molasses in three dimensions, composed of six circularly polarized

beams. This optical configuration is found in the commonly used six-beam magneto-optic trap

(MOT). However, as we shall see, this optical configuration is quite complicated, and we will

only be able to estimate the total rate of fluorescence.

First, we will derive an expression for the electric field and intensity of the light. A

typical MOT is formed with two counterpropagating, right-circularly polarized beams along the

z-axis and two pairs of counterpropagating, left-circularly polarized beams along the x- and y-
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axes. Thus, the net electric field is given by

E(r, t) =
E0

2
e−iωt

[
eikz
(
x̂− iŷ√

2

)
+ e−ikz

(
x̂+ iŷ√

2

)

+ eikx
(
ŷ + iẑ√

2

)
+ e−ikx

(
ŷ − iẑ√

2

)

+ eiky
(
ẑ + ix̂√

2

)
+ e−iky

(
ẑ − ix̂√

2

)]
+ c.c.

=
√
2E0e

−iωt
[
(cos kz − sin ky)x̂ + (sin kz + cos kx)ŷ + (cos ky − sin kx)ẑ

]
.

(A.56)

Hence, the polarization is linear everywhere, but the orientation of the polarization vector is

strongly position-dependent. The corresponding intensity is given by

I(r) = I0
[
6− 4(cos kz sin ky + cos ky sin kx− sin kz cos kx)

]
, (A.57)

where I0 := (1/2)cε0E 2
0 is the intensity of a single beam. The six beams form an intensity

lattice in space, with an average intensity of 6I0 and a discrete set of points with zero intensity.
Note, however, that the form of this interference pattern is specific to the set of phases chosen

here, since there are more than the minimal number of beams needed to determine the lattice

pattern.

It is clear that this situation is quite complicated, because an atom moving in this mo-

lasses will experience both a changing intensity and polarization direction. The situation be-

comes even more complicated when the magnetic field gradient from the MOT is taken into

account. However, we can estimate the scattering rate if we ignore the magnetic field and as-

sume that the atoms do not remain localized in the lattice, so that they are, on the average,

illuminated by all polarizations with intensity 6I0. In this case, the scattering rate is given by

the two-level atom expression (A.45), with the saturation intensity corresponding to an isotropic

pump field (Isat = 2.70 mW/cm2
for the F = 4 −→ F ′ = 5 cycling transition, ignoring the

scattering from any light tuned to the F = 3 −→ F ′ = 4 repump transition). Of course, this is

almost certainly an overestimate of the effective saturation intensity, since sub-Doppler cooling

mechanisms will lead to optical pumping and localization in the light maxima [Townsend95].

These effects can be minimized, for example, by using a very large intensity to operate in the

saturated limit, where the scattering rate approaches Γ/2.

This estimate of the scattering rate is quite useful since it can be used to calculate the

number of atoms in an optical molasses from a measurement of the optical scattering rate. For

example, if the atoms are imaged by a CCD camera, then the number of atoms Natoms is given

by

Natoms =
8π
[
1 + 4(∆/Γ)2 + (6I0/Isat)

]
Γ(6I0/Isat)texpηcountdΩ

Ncounts , (A.58)
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where I0 is the intensity of one of the six beams, Ncounts is the integrated number of counts

recorded on the CCD chip, texp is the CCD exposure time, ηcount is the CCD camera efficiency

(in counts/photon), and dΩ is the solid angle of the light collected by the camera. An expression

for the solid angle is

dΩ =
π

4

(
f

(f/#)d0

)2
, (A.59)

where f is the focal length of the imaging lens, d0 is the object distance (from the MOT to the

lens aperture), and f/# is the f-number of the imaging system.
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A.5 Data Tables

Table A.1: Fundamental Physical Constants (1998 CODATA recommended values [Mohr00])

Speed of Light c 2.997 924 58 × 108 m/s (exact)

Permeability of Vacuum µ0 4π × 10−7N/A2 (exact)

Permittivity of Vacuum ε0
(µ0c2)−1 (exact)

= 8.854 187 817 . . .× 10−12 F/m

Planck’s Constant

h
6.626 068 76(52)× 10−34 J·s

4.135 667 27(16)× 10−15 eV·s

~
1.054 571 596(82)× 10−34 J·s
6.582 118 89(26)× 10−16 eV·s

Elementary Charge e 1.602 176 462(63)× 10−19 C

Bohr Magneton µB
9.274 008 99(37)× 10−24 J/T

h · 1.399 624 624(56)MHz/G

Atomic Mass Unit u 1.660 538 73(13)× 10−27 kg

Electron Mass me
5.485 799 110(12)× 10−4 u
9.109 381 88(72)× 10−31 kg

Bohr Radius a0 0.529 177 208 3(19)× 10−10 m

Boltzmann’s Constant kB 1.380 650 3(24)× 10−23 J/K

Table A.2: Cesium Physical Properties.

Atomic Number Z 55

Total Nucleons Z +N 133

Atomic Mass m
132.905 451 931(27) u

2.206 946 50(17)× 10−25 kg
[Bradley99]

Density at 25◦C ρm 1.93 g/cm3 [Lide00]

Melting Point TM 28.44 ◦C [Lide00]

Boiling Point TB 671 ◦C [Lide00]

Specific Heat Capacity cp 0.242 J/g·K [Lide00]

Molar Heat Capacity Cp 32.210 J/mol·K [Lide00]

Vapor Pressure at 25◦C Pv 1.3 × 10−6 torr [Nesmeyanov63]

Nuclear Spin I 7/2

Ionization Limit EI
31 406.467 66(15) cm−1

3.893 905(15) eV
[Weber87]
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Table A.3: Cesium D2 (62S1/2 −→ 62P3/2) Transition Optical Properties.
Frequency ω0 2π · 351.725 718 50(11)THz [Udem00]

Wavelength (Vacuum) λ 852.347 275 82(27) nm

Wavelength (Air) λair 852.118 73 nm

Wave Number (Vacuum) kL/2π 11 732.307 104 9(37) cm−1

Lifetime τ 30.517(57)ns [Rafac99; Young94]

Decay Rate/
Natural Line Width (FWHM)

Γ
32.768(62)× 106 s−1

2π · 5.2152(98)MHz

Recoil Velocity vr 3.5225mm/s

Recoil Energy ωr 2π · 2.0663 kHz

Doppler shift (vatom = vr) ∆ωd(vatom = vr) 2π · 4.1327 kHz

Frequency shift for standing wave
moving with vsw = vr

∆ωsw(vsw = vr) 2π · 8.2653 kHz

Table A.4: Cesium D1 (62S1/2 −→ 62P1/2) Transition Optical Properties.

Frequency ω0 2π · 335.116 048 807(41)THz [Udem99]

Wavelength (Vacuum) λ 894.592 959 86(11) nm

Wavelength (Air) λair 894.353 09 nm

Wave Number (Vacuum) kL/2π 11 178.268 160 7(14) cm−1

Lifetime τ 34.855(57)ns [Rafac99; Young94]

Decay Rate/
Natural Line Width (FWHM)

Γ
28.690(47)× 106 s−1

2π · 4.5662(75)MHz

Recoil Velocity vr 3.3561mm/s

Recoil Energy ωr 2π · 1.8758 kHz

Doppler shift (vatom = vr) ∆ωd(vatom = vr) 2π · 3.7516 kHz

Frequency shift for standing wave
moving with vsw = vr

∆ωsw(vsw = vr) 2π · 7.5031 kHz

Table A.5: Cesium D Transition Hyperfine Structure Constants.

Magnetic Dipole Constant, 62S1/2 A62S1/2
h · 2.298 157 942 5 GHz (exact) [Arimondo77]

Magnetic Dipole Constant, 62P1/2 A62P1/2
h · 291.920(19)MHz [Udem99; Rafac97]

Magnetic Dipole Constant, 62P3/2 A62P3/2
h · 50.275(3)MHz [Tanner88a]

Electric Quadrupole Constant, 62P3/2 B62P3/2
h · −0.53(2)MHz [Tanner88a]
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Table A.6: Cesium D Transition Magnetic and Electric Field Interaction Parameters.

Electron spin g-factor gS 2.002 319 304 373 7(80) [Mohr00]

Electron orbital g-factor gL 0.999 995 87

Fine structure Landé g-factor

gJ (62S1/2) 2.002 540 32(20) [Arimondo77]

gJ (62P1/2) 0.665 90(9) [Arimondo77]

gJ (62P3/2) 1.3340(3) [Arimondo77]

Nuclear g-factor gI −0.000 398 853 95(52) [Arimondo77]

Clock transition Zeeman shift ∆ωclock/B
2 2π · 427.45Hz/G2

Ground-state polarizability α0(6
2S1/2) h · 0.1001(20)Hz/(V/cm)2 [Miller00]

D1 scalar polarizability α0(6
2P1/2) − α0(6

2S1/2) h · 0.2415(24)Hz/(V/cm)2 [Hunter88]

D2 scalar polarizability α0(6
2P3/2) − α0(6

2S1/2) h · 0.308 60(60)Hz/(V/cm)2 [Tanner88b]

D2 tensor polarizability α2(6
2P3/2) h · −0.065 29(37)Hz/(V/cm)2 [Tanner88b]

Table A.7: Cesium Dipole Matrix Elements and Saturation Intensities.

D2(6
2S1/2 −→ 62P3/2) Transition Dipole
Matrix Element

〈J = 1/2‖er‖J ′ = 3/2〉
4.4754(59) ea0

3.7944(50)× 10−29 C·m

Effective Dipole Moment and Saturation

Intensity (F = 4 → F ′ = 5)
(isotropic light polarization)

diso,eff (F = 4 → F ′ = 5)
2.0199(27) ea0

1.7126(23)× 10−29 C·m
Isat(iso,eff)(F = 4 → F ′ = 5) 2.7020(36)mW/cm2

Effective Far-Detuned Dipole Moment and

Saturation Intensity

(D2 line, π-polarized light)

ddet,eff,D2

2.5839(34) ea0

2.1907(29)× 10−29 C·m
Isat(det,eff,D2) 1.6512(22)mW/cm2

Dipole Moment and Saturation Intensity,

|F = 4,mF = ±4〉 → |F ′ = 5,m′
F = ±5〉

cycling transition (σ±-polarized light)

d(mF=±4→m′
F=±5)

3.1646(42) ea0

2.6831(36)× 10−29 C·m
Isat(mF=±4→ m′

F
=±5) 1.1008(15)mW/cm2

D1(62S1/2 −→ 62P1/2) Transition Dipole
Matrix Element

〈J = 1/2‖er‖J ′ = 1/2〉
3.1840(37) ea0

2.6995(31)× 10−29 C·m

Effective Far-Detuned Dipole Moment and

Saturation Intensity

(D1 line, π-polarized light)

ddet,eff,D1

1.8383(21) ea0

1.5586(18)× 10−29 C·m
Isat(det,eff,D1) 2.5008(29)mW/cm2

Table A.8: Cesium Relative Hyperfine Transition Strength Factors SFF ′ (from Eq. (A.38)).

D2 (62S1/2 −→ 62P3/2) transition

S45 11/18 S34 15/56

S44 7/24 S33 3/8

S43 7/72 S32 5/14

D1 (62S1/2 −→ 62P1/2) transition
S44 5/12 S34 3/4

S43 7/12 S33 1/4
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Table A.9: Cesium D2 (62S1/2 −→ 62P3/2) Dipole Matrix Elements for σ+ transitions (F =
4, mF −→ F ′,m′F = mF + 1), expressed as multiples of 〈J = 1/2||er||J ′ = 3/2〉.

mF = −4 −3 −2 −1 0 1 2 3 4

F ′ = 5
q

1
90

q
1
30

q
1
15

q
1
9

q
1
6

q
7
30

q
14
45

q
2
5

q
1
2

F ′ = 4
q

7
120

q
49
480

q
21
160

q
7
48

q
7
48

q
21
160

q
49
480

q
7
120

F ′ = 3
q

7
72

q
7
96

q
5
96

q
5
144

q
1
48

q
1
96

q
1
288

Table A.10: Cesium D2 (62S1/2 −→ 62P3/2) Dipole Matrix Elements for π transitions (F =
4, mF −→ F ′,m′F = mF ), expressed as multiples of 〈J = 1/2||er||J ′ = 3/2〉.
mF = −4 −3 −2 −1 0 1 2 3 4

F ′ = 5 −
q

1
10

−
q

8
45

−
q

7
30

−
q

4
15

−
q

5
18

−
q

4
15

−
q

7
30

−
q

8
45

−
q

1
10

F ′ = 4 −
q

7
30

−
q

21
160

−
q

7
120

−
q

7
480

0
q

7
480

q
7
120

q
21
160

q
7
30

F ′ = 3
q

7
288

q
1
24

q
5
96

q
1
18

q
5
96

q
1
24

q
7
288

Table A.11: Cesium D2 (62S1/2 −→ 62P3/2) Dipole Matrix Elements for σ− transitions (F =
4, mF −→ F ′,m′F = mF − 1), expressed as multiples of 〈J = 1/2||er||J ′ = 3/2〉.
mF = −4 −3 −2 −1 0 1 2 3 4

F ′ = 5
q

1
2

q
2
5

q
14
45

q
7
30

q
1
6

q
1
9

q
1
15

q
1
30

q
1
90

F ′ = 4 −
q

7
120

−
q

49
480

−
q

21
160

−
q

7
48

−
q

7
48

−
q

21
160

−
q

49
480

−
q

7
120

F ′ = 3
q

1
288

q
1
96

q
1
48

q
5
144

q
5
96

q
7
96

q
7
72
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Table A.12: Cesium D2 (62S1/2 −→ 62P3/2) Dipole Matrix Elements for σ+ transitions (F =
3, mF −→ F ′,m′F = mF + 1), expressed as multiples of 〈J = 1/2||er||J ′ = 3/2〉.

mF = −3 −2 −1 0 1 2 3

F ′ = 4
q

5
672

q
5
224

q
5
112

q
25
336

q
25
224

q
5
32

q
5
24

F ′ = 3
q

3
32

q
5
32

q
3
16

q
3
16

q
5
32

q
3
32

F ′ = 2
q

5
14

q
5
21

q
1
7

q
1
14

q
1
42

Table A.13: Cesium D2 (62S1/2 −→ 62P3/2) Dipole Matrix Elements for π transitions (F =
3, mF −→ F ′,m′F = mF ), expressed as multiples of 〈J = 1/2||er||J ′ = 3/2〉.

mF = −3 −2 −1 0 1 2 3

F ′ = 4 −
q

5
96

−
q

5
56

−
q

25
224

−
q

5
42

−
q

25
224

−
q

5
56

−
q

5
96

F ′ = 3 −
q

9
32

−
q

1
8

−
q

1
32

0
q

1
32

q
1
8

q
9
32

F ′ = 2
q

5
42

q
4
21

q
3
14

q
4
21

q
5
42

Table A.14: Cesium D2 (62S1/2 −→ 62P3/2) Dipole Matrix Elements for σ− transitions (F =
3, mF −→ F ′,m′F = mF − 1), expressed as multiples of 〈J = 1/2||er||J ′ = 3/2〉.

mF = −3 −2 −1 0 1 2 3

F ′ = 4
q

5
24

q
5
32

q
25
224

q
25
336

q
5
112

q
5
224

q
5
672

F ′ = 3 −
q

3
32

−
q

5
32

−
q

3
16

−
q

3
16

−
q

5
32

−
q

3
32

F ′ = 2
q

1
42

q
1
14

q
1
7

q
5
21

q
5
14
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Table A.15: Cesium D1 (62S1/2 −→ 62P1/2) Dipole Matrix Elements for σ+ transitions (F =
4, mF −→ F ′,m′F = mF + 1), expressed as multiples of 〈J = 1/2||er||J ′ = 1/2〉.

mF = -4 −3 −2 −1 0 1 2 3 4

F ′ = 4
q

1
12

q
7
48

q
3
16

q
5
24

q
5
24

q
3
16

q
7
48

q
1
12

F ′ = 3
q

7
12

q
7
16

q
5
16

q
5
24

q
1
8

q
1
16

q
1
48

Table A.16: Cesium D1 (62S1/2 −→ 62P1/2) Dipole Matrix Elements for π transitions (F =
4, mF −→ F ′,m′F = mF ), expressed as multiples of 〈J = 1/2||er||J ′ = 1/2〉.

mF = -4 −3 −2 −1 0 1 2 3 4

F ′ = 4 −
q

1
3

−
q

3
16

−
q

1
12

−
q

1
48

0
q

1
48

q
1
12

q
3
16

q
1
3

F ′ = 3
q

7
48

q
1
4

q
5
16

q
1
3

q
5
16

q
1
4

q
7
48

Table A.17: Cesium D1 (62S1/2 −→ 62P1/2) Dipole Matrix Elements for σ− transitions (F =
4, mF −→ F ′,m′

F
= mF − 1), expressed as multiples of 〈J = 1/2||er||J ′ = 1/2〉.

mF = -4 −3 −2 −1 0 1 2 3 4

F ′ = 4 −
q

1
12

−
q

7
48

−
q

3
16

−
q

5
24

−
q

5
24

−
q

3
16

−
q

7
48

−
q

1
12

F ′ = 3
q

1
48

q
1
16

q
1
8

q
5
24

q
5
16

q
7
16

q
7
12
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Table A.18: Cesium D1 (62S1/2 −→ 62P1/2) Dipole Matrix Elements for σ+ transitions (F =
3, mF −→ F ′,m′F = mF + 1), expressed as multiples of 〈J = 1/2||er||J ′ = 1/2〉.

mF = −3 −2 −1 0 1 2 3

F ′ = 4 −
q

1
48

−
q

1
16

−
q

1
8

−
q

5
24

−
q

5
16

−
q

7
16

−
q

7
12

F ′ = 3 −
q

1
16

−
q

5
48

−
q

1
8

−
q

1
8

−
q

5
48

−
q

1
16

Table A.19: Cesium D1 (62S1/2 −→ 62P1/2) Dipole Matrix Elements for π transitions (F =
3, mF −→ F ′,m′F = mF ), expressed as multiples of 〈J = 1/2||er||J ′ = 1/2〉.

mF = −3 −2 −1 0 1 2 3

F ′ = 4
q

7
48

q
1
4

q
5
16

q
1
3

q
5
16

q
1
4

q
7
48

F ′ = 3
q

3
16

q
1
12

q
1
48

0 −
q

1
48

−
q

1
12

−
q

3
16

Table A.20: Cesium D1 (62S1/2 −→ 62P1/2) Dipole Matrix Elements for σ− transitions (F =
3, mF −→ F ′,m′F = mF − 1), expressed as multiples of 〈J = 1/2||er||J ′ = 1/2〉.

mF = −3 −2 −1 0 1 2 3

F ′ = 4 −
q

7
12

−
q

7
16

−
q

5
16

−
q

5
24

−
q

1
8

−
q

1
16

−
q

1
48

F ′ = 3
q

1
16

q
5
48

q
1
8

q
1
8

q
5
48

q
1
16
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Figure A.1: Vapor pressure of cesium from the model of Eqs. (A.1). The vertical line indicates

the melting point.
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Figure A.2: Cesium D2 transition hyperfine structure, with frequency splittings between the

hyperfine energy levels. The excited-state values are taken from [Tanner88a], and the ground-

state values are exact, as a result of the current definition of the second. The approximate

Landé gF -factors for each level are also given, with the corresponding Zeeman splittings between

adjacent magnetic sublevels.
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Figure A.3: Cesium D1 transition hyperfine structure, with frequency splittings between the

hyperfine energy levels. The excited-state values are taken from [Udem99; Rafac97], and the

ground-state values are exact, as a result of the current definition of the second. The approxi-

mate Landé gF -factors for each level are also given, with the corresponding Zeeman splittings

between adjacent magnetic sublevels.
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Figure A.4: Cesium 62S1/2 (ground) level hyperfine structure in an external magnetic field. The
levels are grouped according to the value of F in the low-field (anomalous Zeeman) regime and

mJ in the strong-field (hyperfine Paschen-Back) regime.
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Figure A.5: Cesium 62P1/2 (D1 excited) level hyperfine structure in an external magnetic field.

The levels are grouped according to the value of F in the low-field (anomalous Zeeman) regime

andmJ in the strong-field (hyperfine Paschen-Back) regime.
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Figure A.6: Cesium 62P3/2 (D2 excited) level hyperfine structure in an external magnetic field.

The levels are grouped according to the value of F in the low-field (anomalous Zeeman) regime

andmJ in the strong-field (hyperfine Paschen-Back) regime.
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Figure A.7: Cesium 62P3/2 (D2 excited) level hyperfine structure in a constant, external electric

field. The levels are grouped according to the value of F in the low-field (anomalous Zeeman)

regime and |mJ | in the strong-field (“electric” hyperfine Paschen-Back) regime. Levels with the
same values of F and |mF | (for a weak field) are degenerate.





Appendix B

Phase Space Gallery I: Standard Map

In this appendix we take a stroll through the phase space of the standard map as it becomes

increasingly chaotic. As we have seen in Chapter 4, the standard map is actually a one-parameter

family of maps, given by

pn+1 = pn +K sinxn
xn+1 = xn + pn+1 .

(B.1)

The stochasticity parameterK controls the “degree of chaos” of the dynamics.

For K = 0, the momentum is a constant of the motion, so the phase space is simply

the set of contours of constant p. For small K, the map is weakly perturbed. Most of the tori

are distorted but still present, with only very small chaotic regions (as expected from the KAM

theorem), and several resonances become visible (as expected from the Poincaré–Birkhoff the-

orem). The phase space structure becomes especially rich when K is near Greene’s number

(≈ 0.971635) [Greene79], which is the critical value at which the last KAM surface (i.e., invari-

ant torus that spans the phase space, partitioning the chaotic regions into disconnected cells)

is destroyed, and the chaotic transport makes a phase transition from local to global diffusion.

Beyond this value, much of the stable structure breaks down, leaving mostly the primary reso-

nances, until they become unstable at K = 4. The phase space then becomes mostly chaotic,

with some islands popping back up now and then (such as the accelerator modes near K = 2π

and 4π).

In the graphics that follow, the iterates of the standard map are plotted for various

stochasticity parameters. The phase plots here show about 40 different trajectories, with around

8000 iterations per trajectory. To retain the symmetry of the phase space, the symmetric image

(2π − x, 2π − p) of each (x, p) point is also plotted. The colors in the diagrams mark different
trajectories, serving the dual purposes of heightening the contrast between phase-space struc-

tures and making it clear when mixing behavior is present. Because of the 2π-periodicity of the

phase space in both x and p, only one unit cell of the phase space is shown.

The phase-space plots in this and the next gallery were hand-coded directly in the

POSTSCRIPT graphics language, which is a powerful and efficient tool for producing complex

281
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graphics. These rather small graphics files can then be printed on standard laser printers, and

the printer’s processor performs the iteration mapping or numerical integration to determine

the locations of the points. To save space in the PDF-formatted version of this document (and

for more consistent color and intensity), these phase spaces were rasterized prior to inclusion in

this LATEX document. An earlier example of using POSTSCRIPT for plotting the phase space of

an iterated map can be found in [Peres93].



283

K = 0.0 K = 0.1

K = 0.2 K = 0.3

K = 0.4 K = 0.5



284 Appendix B. Phase Space Gallery I: Standard Map
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Appendix C

Phase Space Gallery II: Amplitude-Modulated Pendulum

Now we examine the phase space for the other system that we study in this dissertation, the

amplitude-modulated pendulum. This system is described by the Hamiltonian

H(x, p, t) =
p2

2
− 2α cos2(πt) cos(x) , (C.1)

which is just the pendulum Hamiltonian with a single-frequency modulation of the well depth.

As the time dependence here can be decomposed into three frequencies, the phase-space is

dominated by the three corresponding primary resonances, located at p = 0 and p = ±2π.
These three resonances form as α increases from zero, and they dissolve into the surrounding

chaotic sea as α continues to grow. Especially dramatic is the “molting” behavior of the islands,

where they grow an island chain and then shed it into the chaotic sea; this can be seen, for

example, for a period-4 chain in the center island around α = 3.2, and a period-4 island chain

in the outer islands around α = 5.2. Also interesting is that the remnants of the center island

disappear around α = 11, but the island makes a strong reappearance around α = 18.

In the following graphics, the trajectory coordinates are plotted, sampled at unit times

t = n (for integer n). The phase plots here show about 60 different trajectories, with around

4000 iterations per trajectory. To retain the symmetry of the phase space, the three symmetric

images (x,−p), (−x, p), and (−x, −p) of each (x, p) point is also plotted.

The phase-space plots in this gallery were again hand-coded directly in POSTSCRIPT,

where the code contained two embedded integrators, a fixed-step, second-order Stoermer rou-

tine and a fourth-order Runge-Kutta routine. Despite the lower order of the Stoermer method, it

was much more accurate for the same step size than the Runge-Kutta integrator. These graphics

files were again rasterized before inclusion in the PDF-formatted version of this document, as

they require extensive processing time compared to the standard-map phase plots.
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α = 0.0 α = 0.2

α = 0.4 α = 0.6

α = 0.8 α = 1.0
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α = 1.2 α = 1.4

α = 1.6 α = 1.8

α = 2.0 α = 2.2
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α = 2.4 α = 2.6

α = 2.8 α = 3.0

α = 3.2 α = 3.4
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α = 3.6 α = 3.8

α = 4.0 α = 4.2

α = 4.4 α = 4.6
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α = 4.8 α = 5.0

α = 5.2 α = 5.4

α = 5.6 α = 5.8
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α = 6.0 α = 6.2

α = 6.4 α = 6.6

α = 6.8 α = 7.0
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α = 7.2 α = 7.4

α = 7.6 α = 7.8

α = 8.0 α = 8.2
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α = 8.4 α = 8.6

α = 8.8 α = 9.0

α = 9.2 α = 9.4
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α = 9.6 α = 9.8

α = 10.0 α = 10.4

α = 10.8 α = 11.2
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α = 11.6 α = 12.0

α = 12.4 α = 12.8

α = 13.2 α = 13.6
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α = 14.0 α = 15.0

α = 16.0 α = 17.0

α = 18.0 α = 19.0
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α = 20.0 α = 22.0

α = 24.0 α = 26.0
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of bound states is a system of atoms interacting with a radiation field,” Sov. Phys. JETP 44,

945 (1977). Translation of Zh. Eksp. Teor. Fiz. 71, 1799 (1976).

[BENKADDA97] S. Benkadda, S. Kassibrakis, R. B. White, and G. M. Zaslavsky, “Self-similarity

and transport in the standard map,” Phys. Rev. E 55, 4909 (1997).

[BENSON95] Oliver Benson, Andreas Buchleitner, Georg Raithel, Markus Arndt, Rosario N.

Mantegna, and Herbert Walther, “From coherent to noise-induced microwave ionization of

Rydberg atoms,” Phys. Rev. A 51, 4862 (1995).

[BERESTETSKII71] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Relativistic Quantum

Theory (Pergamon Press, Oxford, 1971).

[BERMAN78] G. P. Berman and G. M. Zaslavsky, “Condition of Stochasticity in Quantum Non-

linear Systems,” Physica A 91, 450 (1978).



Bibliography 307

[BERRY87] M. V. Berry, “Quantum chaology,” Proc. R. Soc. Lond. A 413, 183 (1987).

[BERRY91] Michael Berry, “Some Quantum-to-Classical Asymptotics,” in Chaos and Quantum

Physics: Proceedings of the Les Houches Summer School, Session LII, 1–31 August 1989,

M.-J. Giannoni, A. Voros, and J. Zinn-Justin, Eds. (North-Holland, Amsterdam, 1991).

[BERRY99] M. V. Berry and E. Bodenschatz, “Caustics, multiply reconstructed by Talbot inter-

ference,” J. Mod. Opt. 46, 349 (1999).

[BETHE57] Hans A. Bethe and Edwin E. Salpeter, Quantum Mechanics of One- and Two-

Electron Atoms (Springer-Verlag, Berlin, 1957).

[BHARUCHA97A] C. F. Bharucha, K. W. Madison, P. R. Morrow, S. R. Wilkinson, Bala Sundaram,

andM. G. Raizen, “Observation of atomic tunneling from an accelerating optical potential,”

Phys. Rev. A 55, R857 (1997).

[BHARUCHA97B] Cyrus Farrokh Bharucha, Experiments in Dynamical Localization of Ultra-

Cold Sodium Atoms Using Time-Dependent Optical Potentials, Ph.D. dissertation, The

University of Texas at Austin (1997).

[BHARUCHA99] C. F. Bharucha, J. C. Robinson, F. L. Moore, Qian Niu, Bala Sundaram, and

M. G. Raizen, “Dynamical localization of ultracold sodium atoms,” Phys. Rev. E 60, 3881

(1999).

[BHATTACHARYA00] Tanmoy Bhattacharya, Salman Habib, and Kurt Jacobs, “Continuous

Quantum Measurement and the Emergence of Classical Chaos,” Phys. Rev. Lett. 85, 4852

(2000).

[BHATTACHARYA01] Tanmoy Bhattacharya, Salman Habib, Kurt Jacobs, and Kosuke Shizume,

“Strange happenings at the quantum-classical boundary: The delta-kicked rotor,” arXiv.org

preprint quant-ph/0105086 (2001).

[BIJLSMA94] M. Bijlsma, B. J. Verhaar, and D. J. Heinzen, “Role of collisions in the search for

an electron electric-dipole moment,” Phys. Rev. A 49, R4285 (1994).

[BJORKLUND83] G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency Mod-

ulation (FM) Spectroscopy,” Appl. Phys. B 32, 145 (1983).
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Statistics,” Phys. Rev. Lett. 75, 4575 (1995).

[REICHEL96] Jakob Reichel, Refroidissement Raman et vols de Lévy: atomes de césium au
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[SCHACK95] Rüdiger Schack, “Comment on ‘Exponential Sensitivity and Chaos in Quantum

Systems,’ ” Phys. Rev. Lett. 75, 581 (1995). A comment on [Blümel94].
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anik,” Naturwissenschaften 14, 664 (1926).

[SCOTT01] A. J. Scott and G. J. Milburn, “Quantum nonlinear dynamics of continuously mea-

sured systems,” Phys. Rev. A 63, 042101 (2001).

[SCULLY97] Marlan O. Scully and M. Suhail Zubairy, Quantum Optics (Cambridge University

Press, Cambridge, 1997).

[SESKO91] D. W. Sesko, T. G. Walker, and C. E. Wieman, “Behavior of neutral atoms in a spon-

taneous force trap,” J. Opt. Soc. Am. B 8, 946 (1991).

[SHEPELYANSKII82] D. L. Shepelyanskii, “Dynamical Stochasticity in Nonlinear Quantum

Systems,” Theor. Math. Phys. 49, 925 (1982).

[SHEPELYANSKY83] D. L. Shepelyansky, “Some Statistical Properties of Simple Classically

Stochastic Quantum Systems,” Physica D 8, 208 (1983).

[SHEPELYANSKY87] D. L. Shepelyansky, “Localization of Diffusive Excitation in Multi-Level

Systems,” Physica D 28, 103 (1987).

[SHIMIZU01] Fujio Shimizu, “Specular Reflection of Very Slow Metastable Neon Atoms from a

Solid Surface,” Phys. Rev. Lett. 86, 987 (2001).

[SHIOKAWA95] K. Shiokawa and B. L. Hu, “Decoherence, delocalization, and irreversibility in

quantum chaotic systems,” Phys. Rev. E 52, 2497 (1995).

[SHIRTS93A] Randall B. Shirts, “Algorithm 721: MTIEU1 and MTIEU2: Two Subroutines to

Compute Eigenvalues and Solutions of Mathieu’s Differential Equation for Noninteger and

Integer Order,” ACM Trans. Math. Soft. 19, 391 (1993).

[SHIRTS93B] Randall B. Shirts, “The Computation of Eigenvalues and Solutions of Mathieu’s

Differential Equation for Noninteger Order,” ACM Trans. Math. Soft. 19, 377 (1993).

[SIMOYI82] Reuben H. Simoyi, Alan Wolf, and Harry L. Swinney, “One-Dimensional Dynamics

in a Multicomponent Chemical Reaction,” Phys. Rev. Lett. 49, 245 (1982).

[SIRKO93] L. Sirko, M. R. W. Bellermann, A. Haffmans, P. M. Koch, and D. Richards, “Probing

Quantal Dynamics of Mixed Phase Space Systems with Noise,” Phys. Rev. Lett. 71, 2895

(1993).

[SIRKO96] L. Sirko, A. Haffmans, M. R.W. Bellermann, and P. M. Koch, “Microwave ‘ionization’

of excited hydrogen atoms: frequency dependence in a resonance zone,” Europhys. Lett.

33, 181 (1996).



Bibliography 329

[SIRKO00] L. Sirko, Sz. Bauch, Y. Hlushchuk, P. M. Koch, R. Blümel, M. Barth, U. Kuhl, and
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