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"This dissertation details an experimental investigation of the center-of-mass motion of
cesium atoms in a time-dependent lattice of light. The research described here proceeds along
two general lines. The first group of experiments considers a realization of the quantum kicked
rotor, where the optical lattice is applied in a series of short, periodic pulses. In the regime where
the classical description of this system is strongly chaotic, the quantum and classical dynamics
differ remarkably due to dynamical localization, which is a manifestation of the quantum sup-
pression of classical chaos. Because this quantum localization is a coherent effect, it should be
vulnerable to noise or coupling to the environment, providing a mechanism for restoring classical
behavior at the macroscopic level. The experimental results confirm that dynamical localization
can be destroyed by adding noise and dissipation in a controlled way, and furthermore they show
that quantitative agreement between the experiment and a classical model can be reached with

a sufficient level of applied noise.

The second line of research considers the weakly chaotic regime, where stable and
chaotic regions coexist in phase space. The optical lattice is modulated sinusoidally in these
experiments to realize the amplitude-modulated pendulum. Careful preparation of the initial
atomic state, including stimulated Raman velocity selection, is necessary to resolve the phase-

space features. Coherent tunneling oscillations are observed between two symmetry-related

xi



islands of stability in phase space. Because the classical transport between the islands is forbid-
den by the system dynamics, as opposed to a potential barrier, the tunneling in this experiment
is an example of dynamical tunneling. Additionally, the experimental data indicate through mul-
tiple signatures that the tunneling is enhanced by the presence of the chaotic region in phase

space, an effect known as chaos-assisted tunneling.
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