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Problem 1

We developed a program that is used to solve the optical Bloch equations for the two-level
atom.

∂t〈σx〉 = −1

2
〈σx〉 + ∆〈σy〉

∂t〈σy〉 = −∆〈σx〉 −
1

2
〈σy〉 − 2Ωρee + Ω

∂tρee =
Ω

2
〈σy〉 − ρee

Note that we have rescaled these equations such that t → Γt,∆ → ∆
Γ ,and Ω → Ω

Γ . Finally,
we set the decay rate Γ = 1. We had a sample code to solve the equations of motion for the
Harmonic Oscillator. Some changes are made in the main module and odeab support to fit them
to our case.(Codes are attached.) The program has the following usage:

usage: bloch <Omega> <Pe0> <tstep> <tfinal>

where

<Omega> is the (scaled) Rabi frequency

<Pe0> is the excited-state population at t=0

<tstep> is the (scaled) time step between each output

<tfinal> is the final time for the integration

Detunning can be ajusted in the code. The output is four columns: scaled time, 〈σx〉, 〈σy〉, ρee.
Data can be sent to Gnuplot, to create some nice plots of optical-Bloch-equation solutions; see
below. They represent Rabi oscillations, the exponential decay of the populations and coherence
between the ground and excited states, and steady-state value. We also made plots that show
the difference between the numercial solution of ρee and the analytic solution that was obtained
by using Torrey’s method.
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It can be seen that the difference is quite small(1.5e-13), but there are also oscillations and
decay. That’s because when the variation of the function is larger, the numerical method is less
accurate. Nevertheless, they are almost perfectly close to the analytic solutions. Here are some
plots for different parameters. Note time here means real time times decay rate Γ.
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Figure 1.1: Motions of σx, σy, ρee.Ω = 10Γ, ρee(0) = 0,∆ = 0

For ∆ = 0, the analytical solution is

ρee(t) =
Ω2

2Ω2 + Γ2

(

1 − e−
−3t

4 (cos ΩΓt+
3Γ

4ΩΓ
sin ΩΓt)

)

where ΩΓ =

√

Ω2 −
(

Γ
4

)2
.

We used the above equation when we found the error between the numerical solution for ρee

and the analytical solution.
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Figure 1.2: Difference in analytical and numerical solutions to ρee.Ω = 10Γ, ρee(0) = 0,∆ = 0
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Figure 1.3: Motions of σx, σy, ρee.Ω = 0.001Γ, ρee(0) = 0,∆ = 100Ω
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For arbitrary ∆, and Ω � Γ, we used the below analytic solutions

ρee =
Ω2

Γ2 + 4∆2

(

1 + d−Γt − 2e−
Γt

2 cos ∆t
)

to compare the numerical and analytical solutions for ρee.
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Figure 1.4: Difference in analytical and numerical solutions to ρee.Ω = 0.001Γ, ρee(0) = 0,∆ = 100Ω

For weak excitation, oscillations disappear. The values of coherence and population of ex-
cited state are rather small. This also makes sense that atoms will stay in ground state when
interaction with light is weak.

Codes: bloch and odeab support
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0.1 bloch

!-----------------------------------------------------------------------

! ! bloch.f90 ! ! Important note: these solutions are for the

equations of motion in ! odeab_support.f90 file. We assume here that

the case at hand is for ! homogenous broadening (gamma_perp = gamma

/ 2). Also, we are using ! scaled units such that t = gamma * t,

omega = omega / gamma, and ! delta = delta / gamma. After this

rescaling gamma = 1. ! ! ! This software is to solve the optical

blcoh equations for a two ! two level system and it will give you

the numerical results for ! <simgax>, <sigmay>, and rho_ee; here,

<sigmax> and <sigmay> are ! the x and y component of the bloch

sphere and rho_ee is the excited ! state population. It works for

arbitrary detuning. However, one can only ! compare the numerical

results to the exact solutions only in two cases ! (1) when the

atom is initially in the ground state with zero coherence ! between

the ground and excited state with homogenous broadening, ! ie.

gamma_perp = gamma / 2. These exact solutions are give at ! the

bottom of this code. To reference these solutions you can look at !

Professor Daniel Steck’s QOs notes from the University of Oregon. !

! (2) The other exact solution that you can compare the numerical !

solution is the one where we have omega << gamma and gamma_perp = !

gamma / 2. ! ! Equations of motion that are being solved are: ! !

(d/dt) <sigmax> = delta * <sigmay> - 0.5 * <sigmax> ! (d/dt)

<sigmay> = -delta *<sigmax> - 2 * omega * rho_ee - 0.5<sigmay> !

+ omega ! (d/dt) rho_ee = 0.5 * omega * <sigmax> - rho_ee ! !

! Output is to standard output: first column is the time, ! second

is the numerical solution for sigmax, ! the third is the numerical

solution for sigmay, ! and the fourth is the numerical solution for

Pee. ! ! ! Read the extensive comments to understand the code here.

! ! This code was initially writen by Prof. Dan Steck and was

modified ! by Nima Dinyari, Mark Rodenberger, and Xiaolu Cheng to

integrate the ! above system. ! ! questions? email:

kdinyari@uoregon.edu ! last modified: April, 24th 2006

!-----------------------------------------------------------------------

! comments in Fortran 90/95 start with a ’!’ (can be used in the

middle ! of a line)

program bloch

! we are using variables and subroutines in these other "modules,"

! so we notify the compiler to load that information

use globals

use odeab_support

use odeab90

use utilities

! *always* use this; it forces you to declare all your variables and

! prevents a lot of bugs

implicit none

! declare storage for solution vector; this is specific to the odeab

! integrator-- only modify if you want to use real variables instead

! of complex (change complex -> real)

real(wp), dimension(:), pointer :: y

! declare variables to use below

! we added the three real solutions to be

! used below here Pee = rho_ee above and Pee_smallomega

! is used for case (2) above while Pee is for zero detuning.

! Omega_gamma -> Rabi frequency in the presence of damping to be used

! in the exact solutions in Dan’s notes as part of the

! the roots of f(s).

! (also declared in globals.f90)

! Delta -> Detuning (also declared in globals.f90)

real(wp) :: t, sigmax, sigmay, Pee, Pee_small_omega

character(64) :: format1, buff

integer :: k, nout

! declare command-line arguments:

! Pe0 -> (real) initial amplitude of the excited state population

! Omega -> Rabi frequency (declared in globals.f90)

! tstep -> time step for integrator output

! tfinal -> final time of integrator output

real(wp) :: Pe0, tstep, tfinal

!!!!!! Get arguments from the command line

! unfortunately this was not standardized until Fortran 2003,

! so these commands vary among Fortran 90/95 compilers.

! We will use the new standard commands, which are supported

! by g95; they get characters, and we use ’s2r’ (in utilities.f90)

! to convert them to real numbers.

! Always make sure the user’s input is reasonable:

if ( command_argument_count() .ne. 4 ) call usage()

call get_command_argument(1, buff)

Omega = s2r(buff) !made the first arg omega

call get_command_argument(2, buff)

Pe0 = s2r(buff) !made the second arg Pe0

call get_command_argument(3, buff)

tstep = s2r(buff)

if ( tstep .le. 0.0_wp ) then

write(0,*) "Error: inappropriate tstep"

call usage()

end if

call get_command_argument(4, buff)

tfinal = s2r(buff)

if ( tfinal .le. 0.0_wp .or. tfinal .lt. tstep ) then

write(0,*) "Error: inappropriate tfinal"

call usage()

end if

nout = nint(tfinal/tstep)

if ( nout .gt. 50000 ) then

write(0,*) "Error: too many steps!"

call usage()

end if

! the integrator needs you to do this (just leave it)

y => odeab_y

! Set initial values, detuning, and delta gamma

! note that ’0.0_wp’ means the number ’0.0’ cast into the precision ’wp’

! good practice so you don’t introduce random errors by accidentally

! using single precision

y(1) = 0.0_wp !intially zero since no coherence intially zero as well

y(2) = 0.0_wp !same as above

y(3) = Pe0 * 1.0_wp !the user will set the initial value of Pee

delta = omega * 100.0_wp !sets the detuning

t = 0.0_wp !start at zero time

Omega_gamma = sqrt((Omega)**2 - 0.0625)

! Output initial condition

! format1 is a format string: there are 3 floating point numbers with

! spaces between, each number is formatted to use up to 21

! characters, with up to 15 decimal places.

! write(*, format1) means write to standard output (’*’) using

! ’format1’ to format the output.

!----------------------------------------------------------------------

! We want to added a new column to the output of our function

! so all we did is add a new one to the format and write

! the names of the functions below are given above

!----------------------------------------------------------------------

format1 = "(f21.15,’ ’, f21.15, ’ ’, f21.15, ’ ’, f21.15)"

write(*,format1) t, y(1), y(2), Pe0

!!!!!! Main integration loop

!______________________________________________________________________

! We didnt change this

!----------------------------------------------------------------------

do k = 1, nout
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! this advances the solution array ’y’ from t to t+tstep

call odeab(t, t+tstep)

! if any problems were encountered, this will report it

call handle_odeab_error()

!----------------------------------------------------------------------

! Below we will calculate the exact solution and output the results of

! numerical solution. The reason we have these here is because one might

! want to compare the numerical solution to the exact ones calculated in

! notes.

!----------------------------------------------------------------------

! this is the exact solution for sigmax

! because you tell us that there is no coherence

! between the ground and excied state we set this

! equal to zero

sigmax = 0

! this next line is the exact solution for sigmay on

! page 150 of the combined notes equation 5.165

sigmay = Omega / (Omega**2 + 0.5) * ( 1 - EXP(-0.75 * t) &

* ( cos(Omega_gamma * t) &

- ( (Omega**2 - 0.25) / Omega_gamma ) &

* sin(Omega_gamma * t) ) )

! this is the exact solution for Pee which is given by

! using the exact solution for the sigmaz on page

! 151 equation 5.170 and using the

! fact that sigmaz = 2 * Pee - 1

Pee = ( (((Omega**2) * 0.5)/(Omega**2 + 0.5)) * ( 1 - EXP(-0.75 * t) &

* (cos(Omega_gamma * t) &

+ (0.75 / Omega_gamma) * sin(Omega_gamma * t) ) ) )

! this will be the exact solution for Pee for arbitrary detuning

! when omega << gamma and homogenous broadening.

Pee_small_omega = ( Omega**2 * 0.5 ) / ( 0.5 + 2 * delta**2) &

* ( 1 + EXP(-t) - 2 * EXP(-0.5 * t) * cos(delta * t))

write(*,format1) t, y(1) * 1.0_wp, y(2) * 1.0_wp, y(3) * 1.0_wp

end do

! print performance statistics, if you’re curious, to standard error

call print_odeab_stats(cumulative = .true.)

contains

subroutine usage()

! write (0,*) means write to standard error (0), using default

! formatting (*)

write(0,*) ’’

write(0,*) ’’

write(0,*) ’Usage: ./bloch <Omega> <Pe0> <tstep> <tfinal>’

write(0,*) ’ Omega -> Rabi frequency / gamma’

write(0,*) ’ Pe0 -> initial excited state population’

write(0,*) ’ tstep -> time step for integrator output’

write(0,*) ’ tfinal -> final time of integrator output’

write(0,*) ’’

write(0,*) ’Output is four columns of text to standard output:’

write(0,*) ’ gamma * time, sigmax (numerical), sigmay (numerical), and Pee (numerical)’

write(0,*) ’’

write(0,*) ’’

stop

end subroutine usage

end program bloch

!-----------------------------------------------------------------------

! ! Support module for bloch.f90 program ! ! This module contains

certain setup stuff for the integrator, ! as well as the

equations of motion to solve. The equations ! of motion are

described in bloch.f90 !

!-----------------------------------------------------------------------

module odeab_support

use globals

! declare precision, max # of steps, and error tolerances for integration

integer, parameter :: odeab_prec = wp

integer, parameter :: odeab_maxstp = 500

real(wp), parameter :: odeab_atol = 1.e-13_wp

real(wp), parameter :: odeab_rtol = 1.e-13_wp

! the following lines declare internal storage for the odeab

! integrator; just leave it, except:

! 1. change the dimension to match the number of integration variables

! 2. if your variables are all real, change "complex"es to "real"

type odeab_type

real(wp), dimension(3) :: phi

end type

type(odeab_type), dimension(16), save :: odeab_idx

real(wp), dimension(3), target :: odeab_y

real(wp), dimension(3), save :: odeab_yy, odeab_p, odeab_yp

real(wp), dimension(3), save :: odeab_wt

! declare basic management stuff for integrator (just leave it)

integer :: odeab_istate = 1

logical, parameter :: odeab_stop = .false.

contains

! Subroutine that implements equations of motion, to be called !

by odeab; implements simple complex rotation

subroutine odeab_func(t, y, ydot)

implicit none

real(wp), intent(in) :: t

real(wp), dimension(3), intent(in) :: y

real(wp), dimension(3), intent(out) :: ydot

! return derivative

! Below we will use the equations of motion on page 145 of the combined

! notes equations 5.119. So here we represent y(1) sigmax, y(2) sigmay,

! and y(3) is Pee. Omega and delta will declared in globals.f90

!

ydot(1) = delta * y(2) - 0.5 * y(1)

ydot(2) = -delta * y(1) - 0.5 * y(2) - 2 * omega * y(3) + omega

ydot(3) = 0.5 * omega * y(2) - y(3)

return

end subroutine odeab_func

end module odeab_support
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Problem 2

This section deals with numerically solving the two level atom with stochastic emission
events. First, we know that the two level atom can be described by the unconditioned master
equation.

∂tρ = − i

~
[HA +HAF , ρ] −

Γ

2
[σ†σ, ρ]+ + Γσρσ†.(1)

The stochastic master equation (sme) incorporates the random photon detection event into
the model.

dρ = − i

~
[HA +HAF , ρ]dt −

Γ

2
[σ†σ, ρ]+dt+ Γ〈σ†σ〉ρdt +

(

σρσ†

〈σ†σ〉 − ρ

)

dN.(2)

We can show that taking ensemble average leads back to the unconditioned equation.

〈〈dN〉〉 = Γ〈σ†σ〉dt

dρ = − i

~
[HA +HAF , ρ]dt −

Γ

2
[σ†σ, ρ]+dt+ Γ〈σ†σ〉ρdt +

(

σρσ†

〈σ†σ〉 − ρ

)

Γ〈σ†σ〉dt

dρ = − i

~
[HA +HAF , ρ]dt −

Γ

2
[σ†σ, ρ]+dt+ Γσρσ†dt

That agrees with

∂tρ = − i

~
[HA +HAF , ρ] −

Γ

2
[σ†σ, ρ]+ + Γσρσ†

Surprisingly there is a so called stochastic Schrödinger equation (sse) which is equivalent to
the sme. It can be used to simplify the problem.

d|ψ〉 = − i

~
(HA +HAF )|ψ〉dt +

Γ

2
(〈σ†σ〉 − σ†σ)|ψ〉dt +

(

σ
√

〈σ†σ〉
− 1

)

|ψ〉dN.(3)

To show that the stochastic Schröinger equation and the stochastic master equation are
equivalent one can take the differential of the pure state density operator. It has to be taken
into account that the second order terms do not all vanish due to (dN)2.

Density matrix
ρ = |ψ〉〈ψ|

dρ = (d|ψ〉)〈ψ| + |ψ〉d(〈ψ|) + d(|ψ〉)d(〈ψ|)
Conjugate of (3) is

d〈ψ| =
i

~
〈ψ|(HA +HAF )dt +

Γ

2
〈ψ|(〈σ†σ〉 − σ†σ)dt + 〈ψ|

(

σ†
√

〈σ†σ〉
− 1

)

dN

then
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dρ = − i

~
(HA +HAF )ρdt+

Γ

2
(〈σ†σ〉 − σ†σ)ρdt +

(

σ
√

〈σ†σ〉
− 1

)

ρdN

+
i

~
ρ(HA +HAF )dt +

Γ

2
ρ(〈σ†σ〉 − σ†σ)dt+ ρ

(

σ†
√

〈σ†σ〉
− 1

)

dN

+∅
(

(dt)2
)

+

(

σ
√

〈σ†σ〉
− 1

)

ρ

(

σ†
√

〈σ†σ〉
− 1

)

(dN)2

dρ = − i

~
[HA +HAF , ρ]dt + Γ〈σ†σ〉ρdt − Γ

2
[σ†σ, ρ]+dt − ρdN +

σρσ†

〈σ†σ〉dN

is equation (2), and is equivalent to (1)
Now that the equivalence of these equations has been shown we can go about to derive the

proper dynamical equations for the the state vector coefficients Cg and Ce.

dCe = (i∆Ce − i
Ω

2
Cg +

Γ

2
|Ce|2Ce −

Γ

2
Ce)dt − CedN

dCg = (−iΩ
2
Ce +

Γ

2
Cg|Ce|2)dt +

(

Ce

|Ce|
− Cg

)

dN

One can transform to scaled units (time multiplied by decay rate) where the constants must
be divided by the decay rate. An appropriate redefinition of these constants makes it possible
to remove the decay rate from the equations. One must only remember to divide the time
coordinate by it to obtain the actual time in seconds.

The system is described by two first order differential equations for complex functions. This
made it possible to adapt the given sample code (from the file ’randsample.tgz’), which solves the
harmonic oscillator with random resets, and apply it to the gives sse. The number of equations
was the same so only their form had to be changed in the file ’odeab sample.f90’. There were two
significant changes that had do be done on the main file, which was renamed from ’hoscr.f90’
to ’sse.f90’ (the makefile was manipulated appropriately). The first was to change the reset
condition in the integration loop. In the code’s current form a reset is supposed to occur when
the atom’s decay probability in a certain small time span is greater or equal to a uniformly
distributed number between 0 and 1. The second was to not save the solutions to the array
directly but to compute the desired values from the evolving coefficients and save those to the
storage array. Format and storage array dimension had to be adapted. The program now needs
scaled rabi frequency, scaled integrator time step, scaled final time and the number of single
trajectories to be averaged over as input. The random generator seed is an optional input.
Detuning is set in the code itself. The output goes to standard out and consists of four columns:
scaled time, 〈σx〉, 〈σy〉 and the excited state population. To test the programs functionality the
executable was fed with different parameters which produced the following plots. (Figure 2.1
and 2.2)

To show the presence of the statistical jumps here is a plot of single trajectories for the
excited state population (each with a different seed number). Notice all trajectories starting out
together but after some stochastical jumps they dephase. This would produce a damping effect
if averaged over. (Figure 2.3)
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The damping effect can be seen in the next plot showing several numerical solutions for
the excited state population each with a different number of trajectories to be averaged over
compared to the analytical solution of the damped two-level atom in the appropriate regime.
A higher number of trajectories brings the graph closer to the exact solution. 10000 is already
very close.(Figure 2.4)

Since the decay probability used in the program is only correct for infinitely small time steps
one can examine which step size is needed to make numerical and exact solutions match. The
following plot shows numerically calculated excited state populations with different time step
sizes and the exact solution. A 0.01 scaled step shows good (plain eye) convergence. (Figure
2.5)
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Codes: sse and odeab support
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0.2 sse

!-----------------------------------------------------------------------

! ! sse.f90 ! ! Code for solving a simple differential equation !

using "canned" integrator odeab. The problem is ! the stochastic

schrdinger eq. for the 2-level atom: ! ! d(|psi>) = -(i/h) H

|psi> dt + G/2 (<o*o>-o*o) |psi> dt ! + (

(o/sqrt(<o*o>))-1 ) |psi> dN ! ! o = sigma, o* = sigma dagger,

G = gamma ! ! The atomic state has the following form: ! ! |psi> =

cg |g> + ce |e> ! ! Coefficients’ evolution is determined by

schrdinger eq. ! The code aims at integrating the implied

coefficient odes. ! ! Output is to standard output: first column is

the time, ! second, third and fourth are the numerical solutions

for ! sigmax, sigmay and rhoee. ! ! This code is taken from D.

Steck’s example code ! for solving the harmonic oscillator with

stochastic ! reset and altered by Nima Dinyari, Xiaolu Cheng and !

Mark Rodenberger to solve the two level atom. !

!-----------------------------------------------------------------------

program sse

! we are using variables and subroutines in these other "modules,"

! so we notify the compiler to load that information

use globals

use odeab_support

use odeab90

use random_pl

use utilities

implicit none

! declare storage for solution vector; this is specific to the odeab

! integrator-- only modify if you want to use real variables instead

! of complex (change complex -> real)

complex(wp), dimension(:), pointer :: y

! declare variables to use below

real(wp) :: t

character(64) :: format1, buff

integer :: k, nout, traj

! declare dynamic storage array

complex(wp), dimension(:,:), allocatable :: yout

!declare memory variable to calculate emission probability

complex(wp) :: y2old

! declare command-line arguments:

!

! Omega -> rabi frequency (declared in globals.f90)

! tstep -> time step for integrator output

! tfinal -> final time of integrator output

! ntraj -> number of trajectories to average together

! seed -> number to seed the random number generator

! (same seed gives same sequence of "random" numbers)

! this argument is optional

!-------------------------------------------------------------------------

! Below we edited the file because the usage only calls for a minum of

! four arguments and one optinal one. So command_argument_cound .ne. 5

! goes to four and command_argument_count 6 goes to 5. Then we erased the

! the y0 line and promoted all the others #s up in the call ....(#, buff)

! to make sure it was stored in the right place.

!------------------------------------------------------------------------

real(wp) :: tstep, tfinal, omega_gamma

integer :: ntraj

integer(rpk) :: seed ! need to be special integer type

!!!!!! Get arguments from the command line

! unfortunately this was not standardized until Fortran 2003,

! so these commands vary among Fortran 90/95 compilers.

! We will use the new standard commands, which are supported

! by g95; they get characters, and we use ’s2r’ (in utilities.f90)

! to convert them to real numbers.

! Always make sure the user’s input is reasonable:

if ( command_argument_count() .ne. 4 .and. command_argument_count() .ne. 5 ) &

call usage()

call get_command_argument(1, buff)

Omega = s2r(buff)

call get_command_argument(2, buff)

tstep = s2r(buff)

if ( tstep .le. 0.0_wp ) then

write(0,*) "Error: inappropriate tstep"

call usage()

end if

call get_command_argument(3, buff)

tfinal = s2r(buff)

if ( tfinal .le. 0.0_wp .or. tfinal .lt. tstep ) then

write(0,*) "Error: inappropriate tfinal"

call usage()

end if

nout = nint(tfinal/tstep)

if ( nout .gt. 5000000 ) then

write(0,*) "Error: too many steps!"

call usage()

end if

call get_command_argument(4, buff)

ntraj = s2i(buff)

if ( ntraj .lt. 1 ) then

write(0,*) "Error: ntraj must be a positive integer"

call usage()

end if

if ( ntraj .gt. 10000000 ) then

write(0,*) "Error: that’s a crazy number of trajectories!"

call usage()

end if

! get random number seed, if specified

if ( command_argument_count() .eq. 5 ) then

call get_command_argument(5, buff)

seed = s2i(buff)

call init_rand_pl(seed1=seed)

end if

! allocate output storage array (long dimension always goes first!)

! second index set to 3 (this one cost some time to find; important!!)

allocate( yout(nout+1, 3) )

yout = 0

! the integrator needs you to do this (just leave it)

y => odeab_y

! Set format of output

format1 = "(f21.15,’ ’, f21.15,’ ’,f21.15,’ ’,f21.15)"

! set detuning

delta = omega*0.0_wp

!omega_gamma = SQRT( (omega^2 - (1/4)^2))

omega_gamma = SQRT(omega**2 - 0.0625_wp)

!!!!!! Main loop over trajectories

do traj = 1, ntraj

! Set initial values; y(1)=cg, y(2)=ce, initially in

! ground state

y(1) = 1.0_wp

y(2) = 0.0_wp

y2old = y(2)

t = 0.0_wp

! Reset the integrator

odeab_istate = 1

! Save initial condition

yout(1, 1) = yout(1, 1) + real(y(2)*conjg(y(1))+y(1)*conjg(y(2)),wp)

yout(1, 2) = yout(1, 2) + real(i*(y(2)*conjg(y(1))-y(1)*conjg(y(2))),wp)

yout(1, 3) = yout(1, 3) + real(y(2)*conjg(y(2)),wp)
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!!!!!! Main integration loop

do k = 1, nout

! this advances the solution array ’y’ from t to t+tstep

call odeab(t, t+tstep)

! if any problems were encountered, this will report it

call handle_odeab_error()

! reset the trajectory with decay probability

!(tstep must be small for good accuracy!)

if ( rand_pl() .le. real(tstep*( y2old*conjg(y2old)&

&+y(2)*conjg(y(2)))*0.5_wp,wp) ) then

y(1) = 1.0_wp

y(2) = 0.0_wp

odeab_istate = 1

! tell the integrator to restart the solution

end if

! remember ce

y2old = y(2)

! add results to storage array

! yout(k,1) = sigmax, yout(k,2) = sigmay, yout(k,3) = rhoee

yout(k+1, 1) = yout(k+1, 1) + real(y(2)*conjg(y(1)),wp)

yout(k+1, 2) = yout(k+1, 2) + real(i*(y(2)*conjg(y(1))&

&-y(1)*conjg(y(2))),wp)

yout(k+1, 3) = yout(k+1, 3) + real(y(2)*conjg(y(2)),wp)

end do !!! main integration loop

end do !!! main trajectory loop

! divide sum by N to get average

yout = yout / ntraj

! This part is for exact solution and blanked out here

! calculate and save exact solution

!t = 0.0_wp

!do k = 1, nout+1

! yout(k, 4) = ( (((Omega**2) * 0.5)/(Omega**2 + 0.5)) * &

&( 1 - DEXP(-0.75 * t) &

! * (cos(Omega_gamma * t) &

! + (0.75 / Omega_gamma) * sin(Omega_gamma * t) ) ) )

! t = t + tstep

!end do

! write out results

t = 0.0_wp

do k = 1, nout+1

write(*,format1) t, real(yout(k,1),wp), &

& real(yout(k,2),wp), real(yout(k,3),wp)

t = t + tstep

end do

! print performance statistics, if you’re curious, to standard error

call print_odeab_stats(cumulative = .true.)

contains

subroutine usage()

! write (0,*) means write to standard error (0), using default

! formatting (*)

write(0,*) ’’

write(0,*) ’’

write(0,*) ’Usage: sse <omega> <tstep> <tfinal> <ntraj> [<seed>]’

write(0,*) ’ omega -> scaled rabi-frequency’

write(0,*) ’ tstep -> scaled time step for integrator output’

write(0,*) ’ tfinal -> scaled final time of integrator output’

write(0,*) ’ ntraj -> number of stochastic trajectories to average’

write(0,*) ’ seed -> random number seed (optional)’

write(0,*) ’’

write(0,*) ’Output is four columns of text to standard output:’

write(0,*) ’ time, sigmax (num), sigmay (num), excited state pop (num)’

write(0,*) ’’

write(0,*) ’’

stop

end subroutine usage

end program sse

!-----------------------------------------------------------------------

! ! Support module for hosc.f90 sample program to demonstrate the !

odeab integrator ! ! This module contains certain setup stuff for

the integrator, ! as well as the equations of motion to solve. !

!-----------------------------------------------------------------------

module odeab_support

use globals

! declare precision, max # of steps, and error tolerances for integration

integer, parameter :: odeab_prec = wp

integer, parameter :: odeab_maxstp = 500

real(wp), parameter :: odeab_atol = 1.e-13_wp

real(wp), parameter :: odeab_rtol = 1.e-13_wp

! the following lines declare internal storage for the odeab

! integrator; just leave it, except:

! 1. change the dimension to match the number of integration variables

! 2. if your variables are all real, change "complex"es to "real"

type odeab_type

complex(wp), dimension(2) :: phi

end type

type(odeab_type), dimension(16), save :: odeab_idx

complex(wp), dimension(2), target :: odeab_y

complex(wp), dimension(2), save :: odeab_yy, odeab_p, odeab_yp

real(wp), dimension(2), save :: odeab_wt

! declare basic management stuff for integrator (just leave it)

integer :: odeab_istate = 1

logical, parameter :: odeab_stop = .false.

contains

! Subroutine that implements equations of motion, to be called !

by odeab; implements two level atom evolution

subroutine odeab_func(t, y, ydot)

implicit none

real(wp), intent(in) :: t

complex(wp), dimension(2), intent(in) :: y

complex(wp), dimension(2), intent(out) :: ydot

! return derivative

ydot(1) = -i*0.5*omega*y(2)+0.5*y(1)*y(2)*conjg(y(2)) ! cgdot

ydot(2) = -i*0.5*omega*y(1)+(i*delta+0.5*(y(2)*conjg(y(2))-1))*y(2) ! cedot

return

end subroutine odeab_func

end module odeab_support
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Problem 3

We are trying to write a program to generate quantum trjectories and investigate the quan-
tum beats for vee atom. The possibility of quantum beats in resonance fluorescence is one of
the most significant differences between lambda system and vee system. Assume the radiation
from the two transitions is indistinguishable. The radiated field intensity scales as

〈E(−)E(+)〉 ∝ 〈d(−)d(+)〉 ∝ 〈(σ†1 + σ
†
2)(σ1 + σ2)〉 = ρe1e2

+ ρe1e2
+ ρe1e2

+ ρe2e1

We see that besides the sum of the excited-state populations, there are also the last two
coherence terms represent interference between the two populations. In the case where the two
excited states have different energies, their coherences rotate at the splitting frequency, thus
leading to the quantum beats in the resonance fluorescence. In the case where the excited states
are nondegenerate with splitting δ but both coupled from the ground state by the same field,
we can observe steady quantum beats.

Unconditioned master equation for indistinguishable transitions

∂tρ = − i

~
[HA +HAF , ρ] +D

[

√

Γ1σ1 +
√

Γ2σ2

]

ρ

Counting in the effect of random photon detection, we should use the stochastic schrödinger
equation

Note
c =

√

Γ1σ1 +
√

Γ2σ2

HA = −~∆1|e1〉〈e1| − ~∆2|e2〉〈e2|

HAF =
~Ω

2
(σ†1 + σ1 + σ

†
2 + σ2) =

~Ω

2
(|e1〉〈g| + |g〉〈e1| + |e2〉〈g| + |g〉〈e2|)

Stochastic Schrödinger equation

d|ψ〉 = − i

~
(HA +HAF )|ψ〉dt +

1

2
(〈c†c〉 − c†c)|ψ〉dt +

(

c
√

〈c†c〉
− 1

)

|ψ〉dN

Amplitudes

dCe1
= (i∆1Ce1

− i
Ω

2
Cg)dt+

1

2
(Γ1|Ce1

|2 + Γ2|Ce2
|2 +

√

Γ1Γ2Ce1
C∗

e2
+
√

Γ1Γ2C
∗
e1
Ce2

)Ce1
dt

−1

2
(Γ1Ce1

+
√

Γ1Γ2Ce2
)dt− Ce1

dN

dCe2
= (i∆2Ce2

− i
Ω

2
Cg)dt+

1

2
(Γ1|Ce1

|2 + Γ2|Ce2
|2 +

√

Γ1Γ2Ce1
C∗

e2
+
√

Γ1Γ2C
∗
e1
Ce2

)Ce2
dt

−1

2
(
√

Γ1Γ2Ce1
+ Γ2Ce2

)dt− Ce2
dN
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From this, the motion for the amplitudes will be

dCg = −iΩ
2

(Ce1
+ Ce2

)dt +
1

2
(Γ1|Ce1

|2 + Γ2|Ce2
|2 +

√

Γ1Γ2Ce1
C∗

e2
+
√

Γ1Γ2C
∗
e1
Ce2

)Cgdt

+





√
Γ1Ce1

+
√

Γ2Ce2
√

Γ1|Ce1
|2 + Γ2|Ce2

|2 +
√

Γ1Γ2Ce1
C∗

e2
+

√
Γ1Γ2C∗

e1
Ce2

− Cg



 dN

What we want to measure is the absorption rate

Rabs = Ω · Im[CgC
∗
e1

+ CgC
∗
e2

]

Our program has the same usage as in the second problem. And we set Γ1 = 1, and Γ2

can be adjusted. According to the output of our program, typically, with time increasing, the
absorption is oscillating. There is some negative absorption. The explanation for this is that
there is emission at that time. As a function of splitting, there are two peaks and zero absorption
when splitting is zero. We also make 3-D plots to show the absorption changes with time and
splitting simutaneously.

All plots with tstep = 0.01 and Ω = Γ1,∆ = 1
2(∆1 + ∆2)
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Figure 3.1: plots of absorption rate over time ∆ = 0, 5Γ1overtimeΓ2 = Γ1
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Figure 3.2: absorption rate over detuning in steady state Γ2 = Γ1
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Figure 3.3: three dimensional plot of absorption rate over detuning and time looking down the ’time
valley’ Γ2 = Γ1,∆ = −20..+ 20 in 400 steps
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Figure 3.5: three dimensional plot of absorption rate over detuning and time looking from underneath
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Code: vee3 and odeab support
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0.3 vee

!-----------------------------------------------------------------------

! ! vee.f90 ! ! Code for solving differential equations ! using

"canned" integrator odeab. The problem is ! the three level atom

in the vee configuration. ! ! This solution uses the stochastic

schrdinger equation ! approach which specifies equations of motion

for the ! three state vector coefficients. ! ! Output is to

standard output: first column is the detuning, ! second is time and

third the numerical solution for absorption. ! ! This code is taken

from D. Steck’s example code ! for solving the harmonic oscillator

with stochastic ! reset and altered by Nima Dinyari, Xiaolu Cheng

and ! Mark Rodenberger to solve the vee atom. !

!-----------------------------------------------------------------------

program vee

! we are using variables and subroutines in these other "modules,"

! so we notify the compiler to load that information

use globals

use odeab_support

use odeab90

use random_pl

use utilities

implicit none

! declare storage for solution vector; this is specific to the odeab

! integrator-- only modify if you want to use real variables instead

! of complex (change complex -> real)

complex(wp), dimension(:), pointer :: y

! declare variables to use below

real(wp) :: t

character(64) :: format1, buff

integer :: k, l, n, nout, traj

! declare dynamic storage array

complex(wp), dimension(:,:), allocatable :: yout

! declare memory variables to calculat average decay probability

complex(wp) :: y2old, y1old

! declare command-line arguments:

! omega -> rabi frequency (declared in globals.f90)

! tstep -> time step for integrator output

! tfinal -> final time of integrator output

! ntraj -> number of trajectories to average together

! seed -> number to seed the random number generator

! (same seed gives same sequence of "random" numbers)

! this argument is optional

real(wp) :: tstep, tfinal

integer :: ntraj

integer(rpk) :: seed ! need to be special integer type

!!!!!! Get arguments from the command line

! unfortunately this was not standardized until Fortran 2003,

! so these commands vary among Fortran 90/95 compilers.

! We will use the new standard commands, which are supported

! by g95; they get characters, and we use ’s2r’ (in utilities.f90)

! to convert them to real numbers.

! Always make sure the user’s input is reasonable:

if ( command_argument_count() .ne. 4 .&

& and. command_argument_count() .ne. 5 ) &

call usage()

call get_command_argument(1, buff)

omega = s2r(buff)

call get_command_argument(2, buff)

tstep = s2r(buff)

if ( tstep .le. 0.0_wp ) then

write(0,*) "Error: inappropriate tstep"

call usage()

end if

call get_command_argument(3, buff)

tfinal = s2r(buff)

if ( tfinal .le. 0.0_wp .or. tfinal .lt. tstep ) then

write(0,*) "Error: inappropriate tfinal"

call usage()

end if

nout = nint(tfinal/tstep)

if ( nout .gt. 5000000 ) then

write(0,*) "Error: too many steps!"

call usage()

end if

call get_command_argument(4, buff)

ntraj = s2i(buff)

if ( ntraj .lt. 1 ) then

write(0,*) "Error: ntraj must be a positive integer"

call usage()

end if

if ( ntraj .gt. 10000000 ) then

write(0,*) "Error: that’s a crazy number of trajectories!"

call usage()

end if

! get random number seed, if specified

if ( command_argument_count() .eq. 5 ) then

call get_command_argument(5, buff)

seed = s2i(buff)

call init_rand_pl(seed1=seed)

end if

! allocate output storage array (long dimension always goes first!)

allocate( yout(nout+1, 1) )

yout = 0

! the integrator needs you to do this (just leave it)

y => odeab_y

! set parameters

d = omega*10.0_wp

delta = -20.0_wp

gamma2 = omega * 1.0_wp

! main loop over detuning, goes from -20 to +20

do n = 1, 400

!!!!!! Main loop over trajectories

do traj = 1, ntraj

! Set initial values

! y(1) = ce1, y(2) = ce2, y(3) = cg

y(1) = 0.0_wp

y(2) = 0.0_wp

y(3) = 1.0_wp

y1old = y(1)

y2old = y(2)

t = 0.0_wp

! Reset the integrator

odeab_istate = 1

! Save initial condition

yout(1, 1) = yout(1, 1) + aimag(omega*y(3)*conjg(y(1))&

&+omega*y(3)*conjg(y(2)))

! Set format of output

format1 = "(f21.15,’ ’, f21.15,’ ’, f21.15)"

!!!!!! Main integration loop

do k = 1, nout

! this advances the solution array ’y’ from t to t+tstep

! note that the variable ’t’ gets automatically updated to t+tstep

call odeab(t, t+tstep)

! if any problems were encountered, this will report it
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call handle_odeab_error()

! reset the trajectory with probability

!<cdagger*c>dt (tstep must be small for

! good accuracy!)

if ( rand_pl() .le. real( (0.5_wp)*((y(1)*conjg(y(1))&

&+y1old*conjg(y1old))&

& +gamma2*(y(2)*conjg(y(2))+y2old*conjg(y2old))&

& +SQRT(gamma2)*(conjg(y(2))*y(1)+conjg(y2old)*y1old&

& +conjg(y(1))*y(2)+conjg(y1old)*y2old)), wp)*tstep ) then

y(1) = 0.0_wp

y(2) = 0.0_wp

y(3) = 1.0_wp

odeab_istate = 1

! tell the integrator to restart the solution

end if

y1old = y(1)

y2old = y(2)

! add results to storage array

yout(k+1, 1) = yout(k+1, 1) + aimag(omega*y(3)*conjg(y(1))&

&+omega*y(3)*conjg(y(2)))

end do !!! main integration loop

end do !!! main trajectory loop

! divide sum by N to get average

yout = yout / ntraj

! write out results

t = 0.0_wp

do k = 1, nout+1

write(*,format1) delta, t, real(yout(k,1), wp)

t = t + tstep

end do

delta = delta + 0.1_wp

end do ! main loop

! print performance statistics, if you’re curious, to standard error

call print_odeab_stats(cumulative = .true.)

contains

subroutine usage()

! write (0,*) means write to standard error (0), using default

! formatting (*)

write(0,*) ’’

write(0,*) ’’

write(0,*) ’Usage: vee <omega> <tstep> <tfinal> <ntraj> [<seed>]’

write(0,*) ’ omega -> scaled rabi frequency’

write(0,*) ’ tstep -> scaled time step for integrator output’

write(0,*) ’ tfinal -> scaled final time of integrator output’

write(0,*) ’ ntraj -> number of stochastic trajectories to average’

write(0,*) ’ seed -> random number seed (optional)’

write(0,*) ’’

write(0,*) ’Output is three columns of text to standard output:’

write(0,*) ’ detuning, time, absorption rate (numerical)’

write(0,*) ’’

write(0,*) ’’

stop

end subroutine usage

end program vee

!-----------------------------------------------------------------------

! ! Support module for hosc.f90 sample program to demonstrate the !

odeab integrator ! ! This module contains certain setup stuff for

the integrator, ! as well as the equations of motion to solve. !

!-----------------------------------------------------------------------

module odeab_support

use globals

! declare precision, max # of steps, and error tolerances for integration

integer, parameter :: odeab_prec = wp

integer, parameter :: odeab_maxstp = 500

real(wp), parameter :: odeab_atol = 1.e-13_wp

real(wp), parameter :: odeab_rtol = 1.e-13_wp

! the following lines declare internal storage for the odeab

! integrator; just leave it, except:

! 1. change the dimension to match the number of integration variables

! 2. if your variables are all real, change "complex"es to "real"

type odeab_type

complex(wp), dimension(3) :: phi

end type

type(odeab_type), dimension(16), save :: odeab_idx

complex(wp), dimension(3), target :: odeab_y

complex(wp), dimension(3), save :: odeab_yy, odeab_p, odeab_yp

real(wp), dimension(3), save :: odeab_wt

! declare basic management stuff for integrator (just leave it)

integer :: odeab_istate = 1

logical, parameter :: odeab_stop = .false.

contains

! Subroutine that implements equations of motion, to be called !

by odeab; implements vee atom coefficient evolution

subroutine odeab_func(t, y, ydot)

implicit none

real(wp), intent(in) :: t

complex(wp), dimension(3), intent(in) :: y

complex(wp), dimension(3), intent(out) :: ydot

! return derivative

! ce1dot

ydot(1) = 0.5_wp*( i*(2*delta-d)*y(1)-i*omega*y(3)+&

&y(1)* ( y(1)*conjg(y(1))+sqrt(gamma2)*( y(1)*conjg(y(2))+y(2)*conjg(y(1)) )&

&+gamma2*y(2)*conjg(y(2)) )-(y(1)+sqrt(gamma2)*y(2)) )

! ce2dot

ydot(2) = 0.5_wp*( i*(2*delta+d)*y(2)-i*omega*y(3)+&

&y(2)*(y(1)*conjg(y(1))+sqrt(gamma2)*(y(1)*conjg(y(2))+y(2)*conjg(y(1)))&

&+gamma2*y(2)*conjg(y(2)))-(gamma2*y(2)+sqrt(gamma2)*y(1)) )

! cgdot

ydot(3) = 0.5_wp*( -i*omega*(y(1)+y(2))+&

&y(3)*(y(1)*conjg(y(1))+sqrt(gamma2)*(y(1)*conjg(y(2))+y(2)*conjg(y(1)))&

&+gamma2*y(2)*conjg(y(2))) )

return

end subroutine odeab_func

end module odeab_support
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