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1 Problem 1

In this problem we investigate the interaction of a two-state atom with a classical field. In this semiclassical
regime, the evolution of the quantum state of the atom is determined by the two-state optical Bloch equations.
Solutions to these equations are obtained numerically for various representative combinations of the relavent
physical parameters with a program written in Fortran 95, and plots of the excited state population are
presented. In cases where analytic solutions can be obtained, we have compared these to the numerical
solutions, with the results presented as plots of the difference of the numerical from the analytic.

1.1 Theoretical background

The Bloch equations can be written in terms of matrix elements of the density operator as:

∂tρee = i
Ω

2
(ρ̃eg − ρ̃ge) − Γρee

∂tρgg = −iΩ
2

(ρ̃eg − ρ̃ge) + Γρee

∂tρ̃ge = −(γ⊥ + i∆)ρ̃ge − i
Ω

2
(ρee − ρgg)

∂tρ̃eg = −(γ⊥ − i∆)ρ̃eg + i
Ω

2
(ρee − ρgg),

(1)

where Ω is the Rabi frequency, ∆ the detuning and

γ⊥ =
Γ

2
+ γc (2)

is the transverse decay rate, where γc represents the broadening due to collisions. In this case we assume
homogeneous broadening and therefore γc = 0, so

γ⊥ =
Γ

2
. (3)

Together with the normalization condition,



ρee + ρgg = 1, (4)

these determine the time evolution of the quantum state.

It is convenient to rewrite ρ̃eg and ρ̃ge in terms of the real-valued components of the bloch vector, given by:

〈σx〉 = ρ̃eg + ρ̃ge

〈σy〉 = i(ρ̃eg − ρ̃ge)

(5)

Doing this, and using the normalization condition to eliminate the ground state population, ρgg, the equations
of motion become:

∂tρee =
Ω

2
〈σy〉 − Γρee

∂t 〈σx〉 = ∆ 〈σy〉 − Γ 〈σx〉

∂t 〈σy〉 = −∆ 〈σx〉 − Ω(2ρee − 1).

(6)

We then rescale the dimensionful parameters in these equations by letting t∗ = Γt, Ω∗ = Ω
Γ , and ∆∗ = ∆

Γ to
obtain the equations used in our numerical solutions:

∂t∗ρee =
Ω∗

2
〈σy〉 − ρee

∂t∗ 〈σx〉 = ∆∗ 〈σy〉 − 〈σx〉

∂t∗ 〈σy〉 = −∆∗ 〈σx〉 − Ω∗(2ρee − 1),

(7)

1.2 Data and Results

Numerical solutions to the optical Bloch equations were obtained for the for driving on resonance, ∆ = 0,
and for large detuning, ∆∗ = 10. The numerical results are computed at three different levels of excitation
and then ploted for the ground state population.

1.2.1 Driving On Resonance

In this case the analytic solution of the optical Bloch equations has the simple form:

ρee =
Ω2

2Ω2 + Γ2
(1 − e−

3

4
t(cos(ΩΓt) +

3

4ΩΓ
sin(ΩΓt). (8)

For all the different cases, we choose ρe=0 as the initial condition, tstep=0.01 for the step width and tfinal=10
as final time. For weak excitation we set the scaled Rabi frequency Ω*=0.3 and obtain the following results:
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Figure 1: ρee vs number of time steps for Ω*=0.3

Figure 2: Difference between exact and the numerically determined population vs number of time steps for
Ω*=0.3

Since Ω* is so small, the atom remains almost entirely in the ground state, no oscillation is observable, and
the population never exceeds its steady state value. Plotting the difference between this numerical solution
and the exact solution shows that they agree up to an order of 10−5.

For medium excitation, which we take to be a scaled Rabi frequency Ω*=1, the excited state population
briefly exceeds its steady state value before decaying rapidly to its steady state value. Comparing the
numerical to the analytical solution, we see again, that they agree to order 10−8.

Figure 3: ρee vs number of time steps for Ω*=1

For strong excitation we used a scaled Rabi frequency of Ω*=10. Here we observe Rabi oscillations that
slowly damp to the steady state value. Comparisation to the exact analytic solution shows that our error is
of an order of
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Figure 4: Difference between the exact and the numerically determined population vs number of time steps
for Ω*=1

Figure 5: ρee vs number of time steps for Ω*=10

Figure 6: Difference between the exact and numerically determined population vs number of time steps for
Ω*=10

1.3 Driving Off Resonance

A general solution for arbitrary detuning cannot be found in simple form, however in the case of weak driving,
Ω∗ << 1, we can obtain an explicit solution for the excited state population,

ρee =
Ω2

Ω2 + 4∆2
(1 + e−Γt + e−

1

2
Γtcos(∆t)) (9)

which is compared to the numerical results in an error plot for the weak driving cases of Ω∗ = 0.01, and
Ω = 0.1:

Even for these cases of very weak excitation damped, asymetrically enveloped oscilations are observed for
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Figure 7: Numerically determined excited state population vs scaled time for Ω*=0.01

Figure 8: Difference of analytic umerically determined excited state population vs scaled time for Ω*=0.01

Figure 9: Numerically determined excited state population vs scaled time for Ω*=0.1

5



Figure 10: Numerically determined excited state population vs scaled time for Ω*=0.1

large detunings. The solution remains in very good agreement with the analytically derived result in this
regime. Three additional cases with medium, strong, and very strong driving were also investigated for the
same detuning. For these the scaled Rabi frequency was taken to be 1, 10, and 100. The general behavior
is as expected in these cases, as the amplitude of the Rabi oscilations, and steady state value increases with
strong driving. All of the off-resonance numerical solutions were generated using scaled time step size 0.01
and final step 10 except for the very strong driving case, which used a time step of 0.0001 and a final time
of 5.

Figure 11: Numerically determined excited state population vs scaled time for Ω*=1
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Figure 12: Numerically determined excited state population vs scaled time for Ω*=10

Figure 13: Numerically determined excited state population vs scaled time for Ω*=100

2 Problem 2

2.1 Theory

In this problem we want to investigate the stochastic master equation. This form of the master equation
counts for photon detection. Starting from the stochastic master equation for a two level atom

dρ = − i

~
[HA +HAF , ρ] dt−

Γ

2

[

σ†σ, ρ
]

+
dt+ Γ

〈

σ†σ
〉

ρdt+

(

σρσ†

〈σ†σ〉 − ρ

)

dN, (10)

we can show that it simplifies to the much easier unconditioned master equation if we take an ensemble
average. dN is defined such that it is unity with probability Γ

〈

σ†σ
〉

dt and zero otherwise for any given time
interval dt. Its average can therefore be written as

〈〈dN〉〉 = Γ
〈

σ†σ
〉

dt. (11)
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In addition, ρ(t) and dN(t)are statistically independent, such that we can write

〈〈ρdN〉〉 = 〈〈ρ〉〉 〈〈dN〉〉 . (12)

Using these two restrictions while taking the ensemble average over the stochastic master equation yields to

d 〈〈ρ〉〉 = − i

~
[HA +HAF , 〈〈ρ〉〉] dt−

Γ

2

[〈〈

σ†σ
〉〉

, 〈〈ρ〉〉
]

+
dt+ Γ

〈

σ†σ
〉

〈〈ρ〉〉 dt+

(

〈〈

σσ†〉〉 〈〈ρ〉〉
〈σ†σ〉 − 〈〈ρ〉〉

)

dN

= − i

~
[H, 〈〈ρ〉〉] dt− Γ

2

[

σ†σ, 〈〈ρ〉〉
]

+
dt+ Γσ 〈〈ρ〉〉σ†.

(13)

The unconditioned master equation describes a measurement process where the actual information from the
measurement is not accounted for and the observer takes the average over all possible outcomes(e.g. photon
detection, no photon detection).
As we want to do calculations, we would rather deal with the easier Schroedinger equation instead of the
master equation. The state vector |ψ〉 has only O(n) components, while the density matrix has O(n2)
components; the Schroedinger equation is therefore much easier to solve computationally. It shall be shown
in the following that the Schroedinger equation is equivalent to the master equation. Therefore we make the
assumption to be in a pure state, such that we can write the density operator as

ρ = |ψ〉 〈ψ| , (14)

and obtain by a second order expansion for the differential operator

dρ = d (|ψ〉) 〈ψ| + |ψ〉 d (〈ψ|) + (d |ψ〉) (d 〈ψ|) . (15)

We start out with the stochastic Schroedinger equation for d|ψ〉 and d 〈ψ| which leads to

d |ψ〉 〈ψ| = (− i

~
H |ψ〉 dt+

Γ

2
(
〈

σ†σ
〉

− σ†σ) |ψ〉 dt+
σ

√

〈σ†σ〉
− 1) |ψ〉 dN) 〈ψ|

= − i

~
Hρdt+

Γ

2
(
〈

σ†σ
〉

− σ†σ)ρdt+ (
σ

√

〈σ†σ〉
− 1)ρdN)

|ψ〉 d(〈ψ|) = (
i

~
Hρdt+

Γ

2
ρ(
〈

σ†σ
〉

− σ†σ)dt + ρ(
σ

√

〈σ†σ〉
− 1)dN.

(16)

The second order term of the evolution is

d |ψ〉 d 〈ψ| =
σρσ†

〈σ†σ〉dN − (
σρ− ρσ†
√

〈σ†σ〉
)dN + ρdN. (17)

Finally combining all these terms recovers the stochastic master equation.

2.2 Computational methods

The stochastic Schroedinger equation cannot be solved directly with a computational integrator, as there
are still parts with dt and parts with dN in the equation. Therefore, we have to find a different way to
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acount for the stochastic parts. We include them in the code as follows: First, we integrated the equations of
motion from t to t+∆t under the assumption that dN=0 during this time interval. Then we account for the
stochastic part by introducing randomness to the system. After each time step we pick a random number
ζ ∈[0,1) and compared it to

∆N = Γ

〈

σ†σ
〉

(t) +
〈

σ†σ
〉

(t+ ∆t)

2
∆t. (18)

If ζ ≤ 0 a photon was detected. We change the state then to the ground state. For ζ ≥0 we don’t do
anything as the correct solution at time t+∆t is already obtained. This process is applied to every time step
until we reach the final time. In this way we account for stochastic processes without directly solving the
stochastic master equation.

2.3 Data and Results

To completely characterize all possible solutions we would have to vary the parameters ∆, Γ, tstep, and the
number of trajectories. Obviously varying all of these parameters for even a small number of different values,
such as four different values, and comparing against every other parameter value would give an excessive
amount of data and plots, 44 = 256 to be exact. Instead, for parameters not under investigation, the default
values of ntraj= 104, tstep= 0.01, Ω = 1.0, ∆ = 0.0 are used. All figures are of ρee versus five time units
scaled by Γ.

a) b)

c) d)

Figure 14: Investigation on the number of trajectories: a)1, b)100, c)1000

First, the number of trajectories averaged over was investigated, with the number varying from 1, 100,
1000 and 104. As can be seen from figure 2.3, the solutions don’t converge very well until the number of
trajectories is between 1000 and 104. Therefore for all subsequent plots the number of trajectories averaged
over will be 104.

Second, the step size was varied from 0.1, 0.01 and 0.001, and the results are shown in figure 18. Clearly the
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a) b)

c)

Figure 15: Variation of the step size a) 0.1, b) 0.01, c) 0.001

.1 value does not give good results whereas the 0.01 and 0.001 values do. For all subsequent plots a value of
0.01 will be used for tstep.

a) b)

c)

Figure 16: Variation of Ω a) 0.1, b) 1, c) 10

Thirdly, Ω was varied from 0.1, 1 and 10, scaled by Γ, and the results are shown in figure 19. For the small
value of Ω, where the driving is not very strong, the solution slowly oscillates, as would be expected since
the rabi frequency is small. Also, the excited state population will be small relative to larger values because
the damping effects the state before it has much time to grow. For larger values of Ω the oscillations become
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more apparent, since the Rabi frequency is larger, and the steady state values of ρee are larger as expected.

a) b)

Figure 17: Variation of the detuning a) 0.1, b) 10

Lastly, ∆ was varied from 0.1 and 10, scaled by γ, and the results are shown in figure 17. For small ∆ there
is hardly any change from ∆ = 0, which makes sense. For larger ∆ there are fast oscillations because the
Rabi frequency is large. Interestingly, the excited population is small. Since large ∆ is just large detuning
(far off resonance) it is expected that not much of the population would be excited, which agrees with the
results.
Summing up on our results, we think that they are in good agreement with the theoretical expectations
for this problem: for high enough Rabi frequencies we get damped oscillations between the ground and the
excited state. The randomness that accounts for the stochastic parts of the equation damps the oscillations
until all atoms stay in the ground state.

3 Problem 3

3.1 Theory

For the vee atom one interesting phenomena to observe are Quantum jumps. The transition between Level
1 and Level 2 is weak, while the transition between Level 1 and Level 3 is strongly allowed and strongly
driven. Transitions between 2 and 3 are forbidden. Light is scattered from the strong transition while the
weak transition still occurs occasionally. To investigate this phenomena, we need to modify the master
equation as we did it in problem 2. We will again use the easier Schroedinger equation and include its
stochastic parts introducing randomness to the problem.

Since we are treating the vee atom with indistinguishable decay channels in this simulation, we can
treat the decay process effectively as one single decay process. The transition between the two excited states
is forbidden. The modified unconditioned master equation becomes

∂tρ = − i

~
[H, ρ] +D[

√

Γ1σ1 +
√

Γ2σ2] (19)

where as usual Γ1 and Γ2 are the decay constants for excited states one and two respectively and σ1 and σ2

are the lowering operators for excited states one and two respectively.

Motivated by the above master equation we write the stochastic Schrodinger equation similarly to the two
level atom except with the substitution that

Γσ →
√

Γ1σ1 +
√

Γ2σ2 (20)
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which yields

d |ψ〉 〈ψ| =
(

− i
~
H +

(

Γ1

2 〈σ†
1σ1〉 + Γ2

2 〈σ†
2σ2〉 +

√
Γ1Γ2Re(〈σ†

2σ1〉)
))

|ψ〉dt
+
(

Γ1

2 σ
†
1σ1 + Γ2

2 σ
†
2σ2 +

√
Γ1Γ2Re(σ†

2σ1)
)

|ψ〉dt

+

( √
Γ1c1+

√
Γ2c2

2
√

Γ1|c1|2+Γ2|c2|2
√

Γ1Γ2Re[c∗
2
c1]

)

|ψ〉dN.
(21)

Now, using the common Hamiltonian for the three level atom and invoking the RWA and hitting the left
hand side of the equation with 〈ψ| gives

dcg =
(

− i
2Ω1c1 − i

2Ω2c2 + cg
1
2 (Γ1|c1|2 + Γ2|c2|2) + 2

√
Γ1Γ2Re[c∗2c1]

)

dt

+

( √
Γ1c1+

√
Γ2c2

2
√

Γ1|c1|2+Γ2|c2|2
√

Γ1Γ2Re[c∗
2
c1]

)

dN

dc1 = (i∆1c1 − i
2Ω1cg − 1

2Γ1c1 − 1
2

√
Γ1Γ2c2 + c1

1
2 (Γ1|c1|2 + Γ2|c2|2

√
Γ1Γ22Re[c∗2c1]))dt− c1dN

dc2 = (i∆2c2 − i
2Ω2cg − 1

2Γ2c2 − 1
2

√
Γ1Γ2c2 + c2

1
2 (Γ1|c1|2 + Γ2|c2|2

√
Γ1Γ22Re[c∗2c1]))dt− c2dN

(22)

In the scenario of the Quantum Zeno effct, the transition between the first excited state and the ground state
is neglibile, so for this case we will choose a small Γ1 and a small Ω1 for the transition to the first excited
state, while Γ2 and Ω2 are chosen to be large.

3.2 Methodology

The above equations, similar to problem 2, are not in a form that can be readily solved numerically due to
the dN term. Therefore the equations are solved in a similar manner to problem two, except this time ∆N
is

∆N = 〈cc†cc〉 (23)

where cc is the operator cc =
√

Γ1σ1 +
√

Γ2σ2. This implies that dN is

dN = Γ1〈σ†
1σ1〉 + Γ2〈σ†

2σ2〉 +
√

Γ1Γ2(〈σ†
1σ2〉 + 〈σ†

2σ1〉) (24)

where the overline signifies a linear time average of the quantity at time t and t+∆t. Taking the expectation
value explicitly we see

dN = Γ1|c1|2Γ1|c2|2 +
√

Γ1Γ22Re[c∗2c1]). (25)

Now we apply an algorithm very similar to the one used in problem 2. First, we integrate the equations of
motion from t to t+∆t under the assumption that dN=0 during this time interval. Then we account for the
stochastic part by introducing randomness to the system. After each time step we pick a random number
ζ ∈[0,1) and compare it to ∆N. For ζ ≥0 we don’t do anything. For ζ ≤0 we push the atom to the ground
state. This process is applied to every time step until we reach the final time. In this way we account for
the measuring.

3.3 Data and results

By calculating the flourescence spectrum, which is the sum of the populations and coherences weighted by
the various Γs, we can observe Quantum jumps. Since the transition between the first excited state|e1〉
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and the ground state|g〉 is weakly damped and weakly driven, the transistion between the second excited
state|e2〉 and |g〉 is strongly damped and strongly driven, and the transition between the two excited states
is forbidden, the main contribution to the spectrum should comes from the transition between |e2〉 and |g〉.
The weakly driven transition still occurs, which leads to the jumps in the spectrum; the flow of the strongly
scattered light is interrupted for the duration of transitions from |e1〉. The plot of the scattered intensity
over time therefore shows the resonance flourescence from the strong transition as bright light interrupted
by short periods of darkness. Its occurences and durations are ruled by the corresponding transition rates.

Figure 18: a)Resonance flourescence as an indicator of quantum jumps. As is shown, when the spectrum
is large many transitions between the strongly driven and ground state occur. The ”dark state” occurs
when population is transfered to the weakly driven state. b) Population of the weakly driven state. As one
would expect, the dark state occurs when the population is large and is not immediatly collapsed back to
the ground state.

13


