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1 Problem 1: Simulation of Quantum Diffusion

1.1 Theory

The Schrodinger equation for a two level atom driven by a Weiner process, which simulates homodyne
detector of the X1 quadrature, is given by
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H|Ψ〉dt− Γ
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The equivalent master equation can be found by noting that, to second order, the equation for the density
matrix can be written as

dρ = d(|Ψ〉〈Ψ|) = d(|Ψ〉)〈Ψ| + |Ψ〉d(〈Ψ|) + d(|Ψ〉)d(〈Ψ|). (2)

The compontents of dρ, namely d|(Ψ〉) and d(〈Ψ|) are either given by equation (1) or the conjugate of (1).
The d(|Ψ〉)d(〈Ψ|) term of (2) simplifies greatly due to the fact that dt2 is taken to be zero while from Ito’s
rule dW 2 = dt. Therefore
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(3)

Adding this term to to the d(|Ψ〉)〈Ψ| and |Ψ〉d(〈Ψ|) terms (straight forward algebra that won’t be shown
here) yields the result

dρ = − i

~
[H, ρ]dt+ ΓD[σ]ρ+

√
ΓHH[σ]ρdW (4)

where

D[σ]ρ = σρσ† − 1

2
(σ†σρ+ ρσ†σ) (5)



and

HH[σ]ρ = σρ+ ρσ† − 〈σ + σ†〉ρ. (6)

If σ → σe−iφ then the equation for the density matrix would change accordingly, which leads to the expression

dρ = − i

~
[H, ρ]dt+ ΓD[σe−iφ]ρ+

√
ΓHH[σe−iφ]ρdW (7)

1.2 Data and results

The simulations were made for different time steps and a varying number of trajectories. The code can be
found on the link on our webpage or under /projects/project2/problem1. The files that have actually been
changed are sdesample.f90 and sderk support.f90. In sderk support.f90, we inserted our differential equa-
tions in component form, while we changed the input, the output , the stepnumber and the stepsize. The
parameters Ω, ∆and Γ are also defined in this file. The outputfiles are ntraj1.txt, ntraj20.txt, ntraj100.txt,
ntraj1000.txt where each output is 5 collumns wide contatining time, numerical excited state population,
total population, excited state population of the corresponding Bloch equation and difference between the
exact and the analytic solution in this order.
To judge how accurate numerical solutions to equation (1) are compared to available analytic solutions.
There is no analytic solution to this differential equation, but for an average over a large number of tra-
jectories the solution should converge to the one for the optical Bloch equation. This behaviour will be
investigated in the following.

The system is driven exactly on resonance ( ∆=0), so we expect the excited state population to converge to

ρee =
Ω2

2Ω2 + Γ2
(1 − e−

3

4
t(cos(ΩΓt) +

3

4ΩΓ
sin(ΩΓt). (8)

for a large number of trajetcories.

For the numerical solution initially all population was in the ground state, Ω was set to 10, a time step size
of .01 (where both quantities are normalized by Γ, set to 1.0 here) was used, and the total time of evolution
was 3s.

First, the step size was varied to check whether we were in the right regime: a small variation of the stepsize
shouldn’t make a big difference. This was done for our chosen step size .0.01, the results for tstep=0.005
match those of .01 within the desired precision, so our stepsize is of the right magnitude.

For a large number of trajectories, the numerical result should converge to the analytic solution of the optical
bloch equations. To study the dependence of the convergence on the number of trajectories, the program
was varied such that it averaged over a given number of trajectories, defined by the user, after each time
step. The number of trajectories was chosen as 1, 20, 100 and 10000.

The convergence of the numerical result is well visible in the plots: with an increasing number of trajecto-
ries, the numerical result gets closer to the analytic solution of the OBEs. The graphs correspond to our
expectations: we can see damped Rabi oscillations with noise that is due to the stochastic Wiener process.
The comparison to the exact analytic solution to the optical bloch equations shows the convergence of the
error for increasing number of trajectories.
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Figure 1: Excited state population for one trajectory, Ω = 10, ∆ = 0
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’ntraj20’ using 1:5

Figure 2: Excited state population for 20 trajectories, Ω = 10, ∆ = 0, the upper line is the excited state
solution, while the lower line is the difference between the OBE solution and the numerical result
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Figure 3: Excited state population for 100 trajectories, Ω = 10, ∆ = 0, the upper line is the excited state
solution, while the lower line is the difference between the OBE solution and the numerical result

1.3 Numerical Error

In the previous part of the problem, we studied the convergence of the numerical solution to the OBEs for a
varying number of trajectories. Now, the number of trajectories will be kept one and we want to investigate
the error dependence on time and stepsize. To find out about the error convergence, we consider the function
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Figure 4: Excited state population for 10000 trajectories, Ω = 10, ∆ = 0, the upper line is the excited state
solution, while the lower line is the difference between the OBE solution and the numerical result

f̃(t) − f(t) = e(t,∆t) = eα(t)(∆t)α +O(∆tα=0.5), (9)

where f̃(t) is the numerical result to an SDE solver and f(t) is the exact solution to the corresponding
differential equation. In order to see the convergence of the error in dependence on the stepsize, we need a
large numer of data at different timesteps. The command runscript is used to obtain this. It changes the
number of substeps for each integration from 1 up to 512 and puts the data in ’outn’. The collumns in the
output files are again t, ρee analytic, total population, ρee exact and difference between analytic and exact
result. The input was again ∆ = 0, Γ=1, Ω=10, while the stepsize was set to .01 and the number of steps to
300. then the number of substeps was raised by the command runscript from 1 to 512. These files are read
with an octave command called testscript, that takes the difference between the SDE integrator solution and
the exact solution (collumns 2 and 4) and divides it by the analytic solution. The graph shows error over
stepsize, and it is visible that the error rises quickly after going through a minimum at a stepsize of 0.01.
Our solution wil therefore be the closest to the exact solution for a stepsize around .01, which was also our
initial choice. This result is reasonable as for a larger stepsize we expect a less exact result in general. The
line is the best fit which does notconnect our data points very well as their behaviour is not linear. This is
due to the lack of an analytic result to this differential equation; we cannot see the expected to the order of
1.5 behaviour of the error.
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Figure 5: Error over timestep on a logarithmic scale, it is visiblt that the error has a dip slightly before .01
and inceases fast after that, the crosses are the measurement points while the line is the best fit
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To see that the integrator works fine, we check the testscript command on the original code. In this plot the
behaviour proportional to ∆t1.5 becomes visible.
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Figure 6: Error over timestep on a logarithmic scale, it is visiblt that the error scales with ∆t1.5

2 Problem 2: Numerical Evolution of a Quantum PDE

2.1 Introduction

In this problem we investigate the numerical solutions for the time evolution of a Gaussian wavepacket placed
in a quantum harmonic oscillator, and compare these to the analytically obtainable results.

2.2 Split Operator Method

The split operator method for solving the Schrodinger equation is a means for time evolving an initial
wavefunction for a known system Hamiltonian. In the case of the Harmonic oscilator with unit mass, the
Hamiltonian,

H =
p2

2
+

1

2
ω2x2 = T (p) + V (x), (10)

contains no explicit time dependence, and so the time evolution operator is given by

U(t1, t0) = e
iH∆t

~ (11)

where ∆t = t1 − t0. Now we make use of the fact that the kinetic term of the Hamiltonian has only
momentum dependence and the potential term has only position dependence to rewrite this as a product of
exponential operators. Mathematically we want Qn that solve the equation:

eT+V =
∏

n

eQn (12)
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The Qn that solve this are not unique, in fact it turns out that there are infinitely many possible decompo-
sitions. The first decomposition we consider is the tbree-term decomposition

eλ(A+B) = eλAeλBe−Z , (13)

Expressing the exponential operators on both sides by their Taylor series expansions and expanding the
operator Z in powers of λ, it is straightforward to equate terms of like order in λ from both sides to make
the decomposition valid for any λ.

∞
∑

n=1

λn(T + V )n

n!
=

∞
∑

m,l,q=0

λm+lAmBlZq

m!l!q!
(14)

Z =
∑

n

λnZn (15)

λ0 : 1 = 1 − Z0 → Z0 = 0

λ1 : A+B = A+B − Z1 → Z1 = 0

λ2 : 1
2 (A2 +AB +BA+B2) = A2

2 + B2

2 +AB − Z2 → Z2 = [A,B]

(16)

The lowest order nonzero Zn we get is Z2 = [A,B], so we see that the lowest nontrivial order of λ in the
series expansion of e−Z will be λ2. Then letting A→ T,B → V, andλ→ ∆t gives the decomposition for the
time evolution operator:

eλ(T+V ) = eλT eλV + O((∆t)2), (17)

Neglecting the e−Z operator introduces error of order O(∆t)3.

To reduce errors to O(∆t)3, we can use a decomposition of form:

eλ(A+B) = eλ B

2 eλAeλ B

2 e−Z , (18)

Writing the exponentials on both sides in terms of their Taylor series expansions, expanding Z as above and
equating powers of λ gives,

λ0 : 1 = 1 − Z0 → Z0 = 0

λ1 : A+B = A+B − Z1 → Z1 = 0

λ2 : 1
2 (A2 +AB +BA+B2) = 1

2 (A2 +AB +BA+B2) − Z2 → Z2 = 0

λ3 : 1
6 (A3 +A2 +ABA+AB2 +BA2 +BAB +B2A+B3)

= A3

6 + A2B
8 + AB2

4 + B2A
4 + BA2

8 + ABA
8 + B2

6 − Z3

→ Z3 = −A2B
24 + AB2

12 + B2A
12 − BA2

24 + ABA
12 + BAB

6

(19)
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so we see that the error in ignoring the e−Z operator is O((∆t)2). It is apparrent that this decomposi-
tions yielding higher order error terms can be found by using further symetrized products of exponential
operators. The higher order splittings will require smaller time steps for equivilent accuracy, thus lowering
the computational resources required, but will take more resources to carry out the additional exponential
operators required to carry out each time step. The optimal splitting/timestep combination is therefore
found by balancing out these two factors.

The Schrodinger equation for a particle in a potential well was numerically evolved for different step sizes
and for orders two, four and six in the Richardson expansion. The initial wavepacket in the position basis
was a Gaussian with the form

ψ =
1

√√
2πσx

e(−(x−x0)2/(4σ2

x
)) (20)

where x0 = 0.3 and σx = 0.4. There were 128 grid points on which the value of the wavepacket was
calculated. The dimensionless time steps in which the global error was calculated were 0.00125, 0.0025,
0.005 and 0.01 for order methods two, four and six.

Since the exact solution is know to be periodic with period T = 2π/ω (in these cases ω = 2π so T = 1)
error was calculated by comparing the numerically obtained solution after 10 cycles to the initial conditions.
Global error was calculated for several different parameters, expectation value of position, mean error of the
wavepacket and for the single largest position value of the wavepacket (i.e. the error in the value of the “top”
of the wavepacket, at x = 0.3).

The only change in the given code was a change in the precision of the output from eight digits to 13 digits.
This was necessary due to the order six method being accurate beyond eight significant figures. Since this
change is very minor the code will not be presented here. A simple MatLab script was designed to calculate
errors and plot the results.
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Figure 7: Log Log plot of error in the expectation value of position calculated as a function of step size for
orders two (blue), four (green) and six (red).
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Figure 8: Log Log plot of error in the mean wavepacket value calculated as a function of step size for orders
two (blue), four (green) and six (red).
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Figure 9: Log Log plot of error of a single position point calculated as a function of step size for orders two
(blue), four (green) and six (red).

The error results are shown in loglog plot style for expectation value, mean wavepacket and single point in
figures 7,8 and 9 respectively. As would be expected for relatively large times steps, orders two and four
show a very linearly relationship between log(error) and log(step size). This suggests very strongly that
error as a function of step size is given by a power law relation. For order six the error does not exhibit this
relationship, but can be understood from the premise that there is an optimal step size where the error is
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least. This is due to for “too small” of step sizes round off error becomes a significant factor while for “too
large” of step sizes there is the more familiar error of the numerical approximation becoming less accurate.
So for the appropriate range of step sizes this behavior is also expected.

What is not expected is the power of the power law behavior for orders two and four in the parameter
errors. For order two the powers are 4.000398, 4.000315 and 4.000258 for global errors in expectation
value, mean wavepacket and single point respectively. For order four the powers are 5.018858, 5.050588
and 5.3242811 for global errors in expectation value, mean wavepacket and single point respectively. From
theory, the expected powers should be two and four for orders two and four respectively, at least for one of
the parameter errors.That is why three different parameter errors were calculated. It might be the case that
one expects, for example, expectation value error to scale differently from that of mean wavepacket value
or of single position value, but this seems not to be the case. Simple problems, such as not having enough
data or not running the simulation for long enough (more than 10 cycles) seems inadequate due to the clear
trend in the data. From our knowledge these results are not explainable.2

3 Problem3: Quantum feedback control of the motion of a quantum-

mechanical particle

In this part of the project we model the feedback control of a particle in a one-dimensional harmonic oscillator
where the position of the particle is continuously measured. The stochastic master equation for such a system
is given by

dρ = − i

~
[H, ρ]dt+ 2kD[x]ρdt+

√
2kH[x]ρdW (21)

with the Hamiltonian from problem 2 in the form

H =
p2

2
+

1

2
ω2x2. (22)

We use the easier stochastic Schrodinger equation projected into the position basis, so the evolution of the
wave function ψ is described by

d|ψ >= − i

~
m|ψ > dt− k(x− 〈x〉)2|ψ > dt+

√
2k(x− 〈x〉)|ψ > dW (23)

in our program.

To implement the stochastic process into the solution of the partial differential equation, the second order
operator splitting method implemented above was modified that the spatial parts of the time evolution were
generated by the sderk routine. First, we used the SDE integartor to let the state evolve from t to t+∆t,
using the ordinary differential equation obtained by discarding the momentum term in the Hamiltonian.
Then the fft routine was used to take the fourier transform of the function, the split operator solver routine
was used to apply the drift operator. Then the inverse fourier transform was taken and the time step was

1This value is significantly different from the others most likely due to the error of the smallest step size entering the region

of “optimal” step size, where error due to numerical approximation becomes comparable to roundoff error instead of dominating

the error.
2Unfortunately, we are running out of time on this problem set and must move on the more difficult third problem.
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completed using the SDE integrator as before. This of course is then repeated until the input final time is
reached.

The measurement process has the effect of heating the particle up. In order to counteract this heating, we
want use the state information obtained from measurements, in particular the centroid position 〈x〉 at each
time step, to change the potential the particle is in in such a way that the particle is slowed down. The
parameter that we have control over in an such an experiment is the strength ω of the oscilator potential well.
Noting that the process of measuring position tends to localize the particle in space, it is reasonable to rely
primarily on the centroid position to build the feedback signal, as if the particle were classical, disregarding
the energy due to the spatial spread of the particle’s wavefunction. In this case to cool the atom we need to
adjust ω such that it is small when 〈x〉 is large and large when 〈x〉 is small resulting in effective cooling of
the particle. This method of switching ω high and small suddenly is called the ”bang- bang” method. Its
goal is to apply kicks to the particle such that its environmental interaction is disrupted. It maximizes the
rate of energy extraction. In order to cool the particle we have to extract energy from the system at a higher
rate than the system feeds it in.

To do this in a real homodyne experiment, we must first determine 〈x〉. The quantity which is actually
measured is an electrical signal generated by a photodetector. This can be modeled as

dy(t) = 〈x〉 dt+
dW√

8k
(24)

where k is the measurement strength associated with the detector. This signal thus contains both information
about the particle’s centroid position 〈x〉 and quantum noise. To get the quantity we need therefore to filter
out the noise. The quantum noise takes place on a much smaller timescale than the actual signal we want to
detect, so we pass the photodetector signal through a lowpass filter. The voltage output from the low pass
filter is described by the differential equation

∂V

∂t
= −γV + γVph (25)

where V is the output voltage, Vph is the input signal from the photodetector, and γ = 1
RC . Solving this,

it is straightforward to determine that the steady-state solution for each frequency component of the input

signal is attenuated by a factor of
√

1 + (ω
γ )

2
, and experiences a phase shift of arctan(ω

γ ). Though the use

of the low-pass filter is motivated by the attenuation of high frequencies, the phase shift can also be used
advantageously, as the trap frequency to use for continuous feedback according to the description above
could be taken to be the square of the oscilation of the position expectation value, phase shifted by π

2 , and
with some constant offset frequency added. Thus if we choose an appropriate time constant for the filter,
we can accomplish both reduction of the noise and the needed phase shift.

To simulate the action of the low-pass filter with our computer model, we must numerically integrate equation
(25). The easiest way to do this is to simply replace the derivative with a ratio of finite differences. Then
the output signal at the j + 1 timestep is given in terms of the input and output signals at the j timestep
by:

Vj+1 = (1 − γ∆t)Vj + γVphj (26)

This signal is then squared and fed back to reset the value of ω to

ω = ωoff + ωAV
2 (27)
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where ωoff is an offset frequency, and ωA a scaling amplitude, which serve as tuning parameters to optimize
the feedback.

3.1 Data and results

Unfortunately, we have been unable to simulate realistic cooling, although we have been able to show that
cooling works if we use the knowlege of the position expectation value of the particle we have access to in
our artificial simulation.

First we ran the program without any cooling, which means that the measurement strength k=0 and a fre-
quency of /omega = 2/pi. We start with a Gaussian wave paket as an initial condition for the particle’s wave
function. The code for this can be found under /users/p686g3/projects/project2/problem3/bang.
The result is as we expect–no cooling and measurements result in heating of the particle.
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Figure 10: System without cooling, measurement strength k=0.1

Using a simple bang bang method where the initial frequency of /omega = 2/pi is divided by 1.5 if 〈x〉 is high
and gets multiplied by 1.5 if 〈x〉 is low lets us observe cooling. The measurement strength was set to k=0.02
and k=0.5 . This code can also be found under /users/p686g3/projects/project2/problem3/bang.
Plots for 〈x〉 for two values of the measurement strength follow.
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Figure 11: System cooled with bang bang method, measurement strength k=0.5, initial frequency ω = 2π
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Figure 12: System cooled with bang bang method, measurement strength k=0.01, initial frequency ω = 2π

A more direct way to accomplish cooling with our omniscient knowledge of the state is by directly integrating
the position expectation value and feeding this back to the trap frequency. The plot below shows 〈p2〉 over
time with such a cooling method used. The cooling method effectively prevents the peaks in the kinetic
energy from increasing due to measurement heating as they would if no cooling were used. The code for
this method is contained in the /users/p686g3/projects/project2/problem3/snowflake directory on
atomoptics, although this mechanism is commented out in favor of an attempt at realistic cooling in the
main integration loop in the file sch1d.f90.
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Figure 13: System cooled by feedback from integration of 〈x〉, measurement strength k=0.5, initial frequency
ω = 2π

We made attempts at employing the lowpass filter method to get rid of the noise, but were unable to get con-
vincing results. These attempts can be found in /users/p686g3/projects/project2/problem3/scheisse/bang
and as the currently uncommented feedback method in /users/p686g3/projects/project2/problem3/snowflake.
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