FLOW OF GASES THROUGH
TUBES AND ORIFICES

R. Gordon Livesey o

The nature of gas flow in pipes and ducts changes with the gas pressure and its
description is generally divided into three parts or regimes. The flow dynamics are
characterized by 1, the molecular mean free path, in relation to some characteristic
dimension such as the diameter of a pipe. The flow regime cannot be determined from
the mean free path alone but only from the relation of this parameter to the :
characteristic dimension. The relation is known as the Knudsen number, defined as* S

Kn = @.1)

A
7
Three regimes are generally identified:

1. Free Molecular Flow. The mean free path is of the same order as, or greater =
than, the characteristic dimension (the range of relatively large Knudsen numbers}, '
and gas dynamics are dominated by molecular collisions with the walls of the
retaining vessel or pipe.

2. Continuyum Flow. The mean free path is small compared with the characteristic
dimension (the range of small Knudsen numbers), and intermolecular collisions are
much more frequent than wall collisions. In this regime the properties of the gas

* In the literature the Knudsen number may be vartously defined, for a cylindrical tube, as A/d, d/4, AR,
or R/
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(temperature, density, flow velocity) do not vary significantly over several mean free
paths and the gas can be considered a continuous medium, The gas dynamics are
therefore described and analysed hydrodynamically. Flow in this regime is often
referred to as viscous flow, although there are circumstances (such as flow through
short ducts) in which viscosity plays no part. :

3. Transitional Flow. The transition betwee
occurs at intermediate vaiues of the K
intermolecular collisions are influenti

n continuum and free molecular flow
nudsen number where both wall collisions and
al in determining the flow characteristics.

Expressed in terms of pressure and characteristic dimension the Knudsen number is

Kn H [m RyT

For air at 20°C, with d in mm and P in mbar we obtain

0.066 '
n=—-. 2.3)

Table 2.1 shows the generally accepted range of Knudsen numbers for the three
regimes. There is no sharp transition between the regimes, and somewhat different
values may be quoted by different authors. The gas factor F, in the table, used to
correct for different gases, is the ratio of the mean free path for air to that of the gas

under consideration (at the same pressure and temperature) and can be calculated
from

Jair Har M
F =2T _ air s 2.4
g lgas 7:"gas Mair . ( )

Values of the gas factor for a num

Applications of vacuum techno
(< 107" mbar) through to aroun
described are of interest to worker

ber of common gases are shown in Table 2.2.
logy range from the lowest pressures attainable
d atmospheric pressure, so that alf of the regimes
s in this field. One of the main aims of this chapter is
er as wide a range of conditions as possible, so that

, , and mathematical software means that some of the
more cumbersome formulae are considerabl
However, the “back of an envelope”
engineers and rough calculations are

given wherever possible. Equations

is still a much favored tool of scientists and
often sufficient, so that approximations will be
for the molecuiar, continuum and transitional

Table 2.1. Flow Regimes versus Knudsen Number and Pressure

Regime Kn (2/d) P (mbar), d (mm)
Molecular Kn>0.5 PdF, < 0.133
< Transitional 05>Kn>001 0.133 < PdF, < 6.6

Continuum Kn <001 PdFy > 6.6
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Table 2.2. Properties of Some Common Gases ai 20°C

Relative

Molecular Viscosity Viscosity Ratio
Gas Mass Pa-sx107° (Air/Gas) F,
H, 2 88 207 0.543
He 4 - 196 0.929 0.345
H,0 (vapor} 18 - 9.7 1.88 148
N, 28 17.6 1.03 1.02
Air 29 182 1 1
0, 32 204 0.892 0.937
Ar 40 22.3 0.818 0.959
co, 44 14.1 1.24 1.53

regimes are discussed in Sections 2.2, 2.3, and 2.4, respectively. For the most part,
derivations are not given since there are textbooks and papers where the basic theories
are discussed extensively; several references are listed in each section for the reader
interested in studying the subject in more detail.

All equations are written at least once in the text in SI units; where numerical
coefficients are given, the units used are stated.

Except for the discussion of adiabatic compressible flow, it is generally assumed
throughout this chapter that isothermal conditions apply.

2.1. FLOW CONDUCTANCE, IMPEDANCE, AND GAS THROUGHPUT

In the field of vacuum science and techaology it is common practice to express gas
flow rate as throughput in pressure-volume units. The symbol Q is normally used and
the throughput of gas at a particular pressure is then

4(PV) av
= L =P—, .
9 dt dt 2-3)
If the volumetric flow rate is due to a pump
dv :
0= PT{t— = PS, (2.6)

where S is the speed (or volumetric rate) of the pump at the pressure P.

The pumping speed available at a chamber will be affected by restriction due
to connecting pipework. One of the most common problems in vacuum technology is
to estimate the loss in speed due to such restrictions (system design is covered in
Chapter 9).

Knudsen [1] first introduced the notion of a pipe as an impedance or resistance in
the electrical sense and Dushman [2] introduced the concept of conductance, which is
defined by the relation '

C= 9 @7
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where P, is the upstream pressure and P, is the downstream pressure. These pressures
normally refer to values in (perhaps notional) plenums at the entrance and exit of
a duct or a system fitting such as a valve. Gas flow conductance is thus analogous to
electrical conductance, with pressure difference being the analogue of voltage differ-
ence and Q the analogue of current. The reciprocal of conductance (resistance or
impedance, Z = 1/C) could equaily well be used; however, conductance has come into
common usage in vacuum technology mainly because of its intuitive relation to
volume flow rate and pumping speed

Applying this concept to a set of pipes or components in series, the net conductance
is found from

1
S N (28)

- == +—. 2.9)

In practice it is seldom quite so easy as these equations imply. Some care is nceded
with combinations of components, and this is discussed in Section 2.2.10 in relation to
molecular flow. In continuum flow, conductance depends in a complicated way on the
flow conditions, and a better approach is to calculate the pressure ratio (K,) across
a component or series of components.

It is usnally assumed that continuity applies through a system; that is, the through-
put is the same through all sections. This will be the case as long as sufficient time has
elapsed (from opening a valve or starting a pump for example) and there are no
temperature differences between. the points of interest. In many common situations,
steady conditions are a reasonable assumption. (Some cases of unsteady molecular
flow are covered in Section 2.2.11.) If P, is the inlet pressure to a pump of speed .
S which is connected via a pipeline or component to a chamber, then, assuming steady
conditions, the speed (S,) and pressure (P,) at the chamber are simply related by

PuSn = Pa'Ss . (210)
so that |
P, S
=—§5= 2.11
S=pS-% @11

In this way, the net pumping speed can be found if the pressure ratio can be calculated
From the definition of conductance

Q=@F-P)C . (2.12)

Dividing through by the downstream pressure;P; and rearranging gives

S
K,=1+%.
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This calculation is often easier than taking the reciprocal of a sum of reciprocals, and
K, is the factor by which the pumping speed is reduced. '

2.2. MOLECULAR FLOW

One of the fundamental assumptions in the derivations of molecular flow conductance
is that molecules scatter from a surface according to a cosine distribution. This is also
referred to as diffuse or random scattering and means that: there are no favored
directions. A scattered molecule has the same probability of emerging in any direction,
and this is unrelated to its direction of incidence. There are special circumstances in
which nondiffuse scattering may oceur, but for microscopically rough surfaces the
diffuse scattering law is well established theoretically and expetimentally [3-5].

Figure 2.1 shows the distribution of molecules emerging from an aperture and from
tubes of various lengths. The lengths of the vectors are proportional to the number of
molecules emerging in that direction. It is noticeable that the longer the tube, the more
heavily weighted is the emerging flux to the tube axis. This is an indication of what
occurs inside a tube. An observer close to the entrance (fooking upstream) will see the
entrance plane as a diffuse source. Deep inside the tube an observer will sce a pertur-
bed flux which is peaked toward the axis. This is often referred to as the beaming effect
of a tube.

The aperture in Fig. 2.1 acts as a plane cosine emitter, and the molecular flux shows
a spherical distribution. At small angles to the plane the flux of molecules is reduced,

Fig. 2.1. Angular distribution of molecules exiting tubes of various lengih-io-diameter ratios. Repro-
duced with permission from L. Valyi, Atorm and fon Sources, p. 86. Copyright 1977, Akadémial Kiado,
Budapest.
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compared with larger angles.
a consequence of the angle o
simply smaller.

In the molecular regime,

This is not because there is a preferred direction but is
f view: The emitting plane does not appear “dimmer,”

solution of gas flow problems can be reduced to finding the
conductance of the elements involved since conductance is independent of pressure or

flow conditions. The derivation of conductance, by theoretical or analyticostatistical
methods, assumes that molecules arrive at the entrance plane of a duct from a chaotic
gas, so that the entrance plane effectively behaves as a diffuse (cosine) emitter. When
vacuum components are connected in series, this may not be the case and some
correction is needed; this will be covered in Section 2.2.10.
Clausing [6] first introduced the concept of transmission probability, denoted by «,
If N; molecules arrive at the entrance plane of a duct then the number of these which
reach the exit plane is 2 2%, and Ny{1 — o) return to the entrance. Similarly, of
N molecules striking the exit plane (from a downstream chamber), N;a reach the
entrance. The net flux of molecules from entrance to exit is then (N, — N)a. Although
proportional to the pressure difference across the duct, the net flux is not driven by
2 pressure difference; it actually consists of two independent fluxes, and there is fiot
a flow in the usual sense of the word. Some of the molecules which enter the duct will
return to the entry plane after one or more wall collisions. The flow dynamics are thys
very different to the continuum flow case in which all molecules crossing the entrance

plane will leave the exit (apart from the possibility of back diffusion which can occur in
some circumstances), ‘ ' '

Expressions for conductance are us
probability, so that the conductance of
entrance aperiure conductance multipli

efully formulated in terms .of transmission
a duct (or other component) is given by the
ed by the transmission probability

Cn=Ca. 2.14)

2.2.1. Conductance of an Aperture -

The molecular flow conductance of a thin aperture is directly related to the rate of
impingement of molecules over the aperture area A (discussed in Chapter 1y

where R, is the universal gas constant, T is the thermod
temperature, and M,, is the

This gives the fa

and Table 2.3 gives values of the con

used units,

C.

miliar res

G,

stant k, for several combinations of commonly'

A

ult that the mol
air at 20°C is 11.6 liters per second per sq

R,T
2nM,,’

uare ceniimeter.
For air at 20°C, Eq. (2.15) can be written in the convenient form

kad,

(2.15)

ynamic (or absolute)
molar mass (e.g., 0.028 kg/mole for nitrogen).

ecular flow conductance of an aperture for

(2.16)
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Table 2.3. Aperture Conductance for Air at 20°C in
Various Units

C, =kA
C, k, A4
md-s7t : 115.6 m?
liter-s™ ! 11.56 cm?
. liter-s™* 0.1156 mm?
m*ht 0.4163 mm?*
cfm . 0.245 mm?
cfm 158.1 in?
liter-s~* 74.62 in?

202 General Considerations for Long Ducts

Molecular flow in long ducts was first studied experimentally and theoretically by
Knudsen [7]. He deduced a general relationship for a long duct of length [, varying
cross-sectional area A and perimeter B, which can be written as

-1
Cp = % va[ j ZBi dl] , , @17

where v, is the mean thermal velocity of molecules.
However, as discussed by Steckelmacher [8, 91, Eq. (2.17) gives the correct result
only in the case of a long cylindrical tube and leads to erroneous results for all other

cross sections.
A correct expression was derived by Smoluchowski [10] which may be written

= [ [ L p2cospdeds 2.18)
™ Sl sJ —m/2 2 ’

where p is a chord making an angle 8 with the normal to the perimeter s. Expressions
for a number of different cross sections have been derived from Eq. (2.18).

2 2.3, General Considerations for Short Ducts

For small values of ! it is clear that the long duct relation will give values for
conductance which are foo high. As the length tends to zero the conductance
apparently tends to infinity. Reasoning from the point of view that the entrance of
a duct can be considered as a vacuum circuit element with resistance Z, = 1/C, in
series with the duct proper (regarded as a “long” duct), of resistance Z,; = 1/Cp, the

net conductance is [applying Eq. (2.8)]

Ll (2.19
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Using this principle, the net transmission probability of a short duct then becomes

&
X =
1+ﬁ;,

ns. The maximum error for

{too high). Errors of this order are expected for blocky

Cross sections, but for other cross sections the errors may be more serious. In the case

of narrow rectangular ducts the errors can be greater than 50%, The most accurate

results are obtained using transmission probabilities which have been derived for
a number of different shapes either theoretically or via Monte-Carlo methods.

ability data for cylindrical tubes, from the results of Cole [1 17,

2.5. It is apparent that the transmission probability for a unit

ider a unit length Iid =1 for

beamed distrib

2.2.4. Tube of Uniform Circular Cross Section

Long Tubes. The familiar expression for the condnctance of a long cylindrical tube
of diameter d was first presented by Knudsen [7] in 1909: :

RoT 4d & TER()T
Cuy=4A 2——Mm 37 ,n‘-——ZMm . (2.21)

It can be seen from Eq. (2.21) that the transmission probability for a long cylindrical
tube is

2.22)

Berman [12] derived the solution as an asymptotic expansion, the first four terms of

which are
4dd  1/d\2 /o 91 /d\2 4743 21
=3 “5(7) 1“(3)“73(7) +§(7) 1“(3)"'- 223

For I > d this reduces to Eq. (2.22) (which needs significant correction for J < 504).
Table 2.4 lists values of long tube and aperture conductance for a number of gases,
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> Table 2.4. Conductance of Long Cylindrical Tubes and Apertures for Air at 20°C
: : Relative C,, (/) C,/A C,/d .
0) Molecular liter-s~! liter-s~* © liter-s ! :
Gas Mass {mm} (mm) {mm)
H, 2 0.461 0.440 0.346
. He 4 0.326 0.311 0.245
- Air 29 0.121 0.116 0.0908
AT Ar 40 0.103 00985 00773
o1
si Short Tubes. Transmission probabilities for short tubes derived by Cole [11] are
te shown in Table 2.5. Berman [12] presented equations for the direct calculation of a for
or any length.
1 Table 2.5. Transmission Probabilities for Cylindrical Tubes
it 1jd 2 (Cole [117) « [Eq. (2.20)] % Error
ot 0.05 0.952399 0.963855 - 120
ed 0.15 0.869928 0.898876 - -333
1t 0.25 0.801271 0.842105 - 510
ts 0.35 0.743410 0.792079 —6.55
he 0.45 0.694044 0.747664 —-773
0.5 0.671984 - 0.727273 — 823
0.6 0.632228 0.689655 —9.08
0.7 0.597364 0.655738 - 977
0.8 0.566507 - 0625000 —10.33
' 0.9 0.538975 0.597015 — 10.77
be _ 1 0.514231 0.571429 1112
1.5 0.420055 0.470588 —12.03
2 0.356572 0.400000 —~12.18
; 25 0.310525 0.347826 —12.01 :
21) : 3 0.275438 0.307692 -1 i
3.5 0.247735 0.275862 - 11.35
4 0.225263 0.250000 —10.98
cal 4.5 0.206641 0228571 .- . — 1061
5 0.150941 0.210526 —10.26
10 0.109304 0.117647 —17.63
15 0.076912 0.081633 —6.14 :
22) 20 0.059422 0.062500 —5.18 !
25 0.048448 0.050633 — 431
ik : 30 0.040913 0.042553 —401
of ‘T 35 0.035415 0.036697 — 362
40 0.031225 0.032258 —331
45 0.027925 0.028777 —3.05
50 0.025258 0.025974 — 283
_ 500 0.002646 0.002660 —0.51
23) :
})
'9 Defining

d).

!
es. Y=5r T4
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we obtain

2- VP + 1 +y° 2]
=1+ /i1 =y + 14y -7

This gives results which a

Santeler [13] devised a sim
transmission probability as

FLOW OF GASES THROUGH TUBES AND ORIFICES

where [, is an “equivalent length” and

This gives transmission
to the Cole data.

2.2.5. Duct of Uniform Rectangular Cross Section
The convention used to denote
follows: @ and b are the Cross
the direction of gas flow. Th

confusion, equations quoted
this convention.

a[In(s +./1+ 89 1+ /148 146 (1469 30
H=7| T +n —5— |+

where § = a/b and I » b.
A useful approximation is

This is accurate to better than 1%
Increases slowly with aspect ratio

probabilities with a maximum error of less than 0.7% relative

% ==——1In
T 3n32

1000 and 10,000, respectively,

. (229
459 /Y +1—45I[y +. /y* + 1]
gree with the Cole [11] data to within 0.13%.

pler and more convenient formulation and calculates the
o= 1 s - (225

1+3k

8 R

i, 1

7= 1+ . T
7R

dimensions of rectangular (and elliptical) ducts is as \

-sectional dimensions, with b > a, and ! is the length in
us the cross-sectional area is A

from various authors have been re

Long Ducts. The transmission probability,

!

for aspect ratios (b/a) up to almost 100. The error
but is still only 1.9% and 2.4%,

= ab. To avoid any
cast to conform with

due to Smoluchowski [10], is

5 J (2.26)

b 3a

(2.27)

for aspect ratios of
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(2.25)
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(2.26)

(2.27)

error
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f';
i
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|
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Short Ducts. There appear to be no general expressions which cover the whole
range of lengths and aspect ratios. Data are available from the Monte Carlo calcu-
lations of Levenson et al. [14]. The results of Santeler and Boeckmann [15], which
cover a greater range of lengths and aspect ratios, are shown in Table 2.6 (for short
ducts the original data are listed to six significant figures). Aiso shown for comparison
in Table 2.7 are some of the results of Cole [16], derived using a complementary
variational method which gave upper and lower bounds for o; the values listed are the
means and are accurate to 1.2% or better. :

Table 2.6. Transmission Probabilities for Rectangular Ducts”

bfa
Ya 1 1.5 2 3 4 6 8 12 16 24
0.01 109902 09918 09926 0.9934 09938 0.9942 0.9944 09946 09947 0.9948
0.02 109807 09839 (.9854 09870 0.9878 0.9835 0.9889 09893 09895 0.9897
0.04 [0.9626 09685 0.9715 09744 09759 09774 09782 09789 09793 0.9797
007 109370 09467 09515 0.9564 09589 0.9613 0.9625 09638 09635 0.9650
0.1 09131 09260 0.9326 009392 09425 0.9458 09475 09491 0.9500 0.9508
0.2 {08428 0.8645 0.8757 0.8869 0.8926 0.8982 6.2011 09039 09053 0.9067
04 107334 0.7659 0.7829 0.8004 0.8093 0.8182 0.8227 0.8272 0.8295 0.8317
07 06178 0.6575 0.6793 0.7022 0.7140 07260 0.7321 0.7381 0.7411 0.7442
1 0.5363 0.5786 0.6026 0.6285 06421 0.6560 0.6631 0.6702 0.6737 0.6773
2 0.3780 04192 04444 04733 04893 0.5063 0.5150 0.5240 0.5285 0.5330
4 02424 02759 02977 03245 03404 0.3583 03679 0.3781 0.3833 0(.3885
7 01596 0.1848 02020 (.2242 0.2380 0.2545 0.2639 0.2742 0.2796 0.2852
10 0.1195 01397 0.1537 01723 0©.1843 (.1991 0.2078 0.2177 0.2230 02287
20 0.0655 0.0776 0.0864 0.0984 01066 0.1171 0.1238 0.1319 0.1366 0.1419
40 0.0346 0.041 00464 0053 0058 00652 0.0695 0075 . 0.078 0.083
70 0.020 0024 00275 0032 0035 0039 0.042 0.046 0048 0.052
100 0.014  0.017 0019 0023 0025 0028 0030 0.033 0035 0038
“From Santcler and Boeckmann [15],
Table 2.7. Transmission Probabilities for Rectangular Ducts®
bja
Ija 1 5 10 20 50 100 1000 10000
1 0.53619 0.66722 0.68266
4 0.24233
10 0.11930 0.21280 0.2372 0.2400
20 0.11207
40 0.07234
80 0.04464
100 0.01438 0.0320 0.0438 0.0464 0.0468 :
200 0.0224
400 0.01295

*From Cole [16].
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L5[x —In(x + . /1 + x3)7?
% =05[1+./T+xZ_ Tt o (228
L ! x3+3x2+4——(x2+4)\/1+x2 _ (228

It a(long, closely spaced slot, again with b > ab> )

this equation simplifies to

o, ?[ln (%[ ) - %] (2.29)

2.2.6. Uniform Elliptical Cross Section

@ and b are the minor and major axes, b > 4 I> b

A =gab.

Long Ducts. The expression derived from Eq. (2.18) by Steckelmacher [8] is

=22 g, (2.30)
3nl )

/2 d¢
K(k?) = f —
° /1~ k%in%g

is the complete elliptic integral, and

a b 34

=0, - - +-= . 3
o, 0856lln(4a +4b) (231
The constant is chosen to
errors for practical aspect

for unrealistically large as

give the correct result for b
ratios up to 10 (although t
Pect ratios up to 1000).

= a (circular) and minimises the

he errors are fess than 1% even
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ts which have cross scctions intermediate between rectangular

Generally for duc
and elliptical we bave

O R Fillys 232
where g, is the rectangular duct transmission probability and
As
. (2.33)

Ve =
# azb,

Short Ducts. No data are available for short ducts of elliptical or similar cross
hat the similarity between long elliptical and

section. However, it is expected t
rectangular ducts (of the same cross-sectional area and aspect ratio) will also apply to
probabilities can be found

short ducts. It is suggested that approximate transmission
from

o = rs(l +1a )a,. 2.34)

ry+ lja

For very short ducts this reduces to o, = o, since the transmission probability of an

aperture is independent of shape.

2.2.7. Cylindrical Annulus (Flow Between Concentric Cylinders)

d, = outer diameter, d, = inner diameter,

a=2@-d)= Ta1-e),  e=difda

Long Ducts
aa=d—;X(e),
— 1 E_ 3_% 2 2 % o2 2
X(e)_l——ez[3 e+e 3(1+e]E(e)+3(1 e®) K(e“) |, (2.35)

where K (¢?) and E(e?) are the complete elliptic integrals of the first and second kinds.
X(e) is listed for a range of values of e in Table 2.3.

Short Ducts. Table 2.9 presents the results of Berman [17], who calculated transmis-
sion probabilities over a large range using the variational method. Berman also

obtained an empirical expression which is more convenien

t for computer calculation.
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Table 2.8. The Function X{e) for a Long Cylindrical Annulus [Eq. (2.31)]

e=djdy; 0 0.1 0.2 03 0.4 0.5
X(ek 1.3333 1231 1.1238 10116 08942 0.7711
e=d/dy; 06 0.7 0.8 0.9 095 1.0
X(e): 0.6416 0.5044 03576 01966  0.1071 0

Defining x = If(d, — d,), we obtain

1

. - (2.36)
1.+ x[l — 2u tan_l<-2§ )]

_ 0.0741 — 0.014e — 0.037¢?
T 0918 1 0052

G, =

with

_ 5.825 — 2.86¢ — 1.45¢%
U 11 036e — 1282

The expression is valid in the range 0 < x < 50 and 0 <e<09.

2.2.8. Uniform Triangular Section (Equilateral)

a = length of sides,

A= \/Tg a® = 0.43342%,

Long Ducts

o = (—@@ ? (2.37)

Short Ducts. Approximate transmission probabilities can be obtai

ned using the
entrance correction principle [Eq. (2.20)].

“Tahla:2:0 = Tranemiasion:Probabilities :x-10%-for.Cvlindrical -Annulus?.

2.2.9. Other Shapes

Transmission probabilities for 2 number of geometries are shown in graphical form in
Figs. 2.2 [18], 2.3, and 2.4. It is worth noting that the transmission probability for an
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0.6

R

Fig. 2.2. Molecuiar transmission probabilities of an elbow, from the results of Davies [18].

elbow is almost the same as two short tubes {with length measured at the inside of the
elbow) connected by a large volume. The effect of the elbow is to randomize, at least
partly, the molecular distribution.

2.2.10. Combinations of Components

If two components, with transmission probabilities «; and «,, are connected in series,
then the usual method of determining the net transmission probability is

(2.38)
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Fig. 2.3. Molecular transmission probabilities of a cylindrical tube with restricted openings, from the
results of Davies [18].

Consider two identical, short tubes, of transmission probability «, connected via
a large volume V as shownin Fig. 2.5a. The inlet of tube 2 and the outlet of tube 1 are
also connected to large volumes and, for convenience, the downstream pressure is
taken to be zero. It is supposed that there is no beaming between the tubes, and the
effect of the large volume is to randomize the molecular distribution between the
tubes.

The net flux of molecules through tube 2 is (N, — Ny)«, and the net flux through
tube 1 is N, Under steady conditions, these must be the same, so that N; = Ny/2and
the number of molecules transmitted is N,o/2. The overall transmission probability of
the system is then ¢/2. The conclusion is the same if the transmission probabilities are
combined as in Eq. (2.38).
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Fig. 2.4. Molacular transmission probabilities of a chevron batile. Reproduced with permission from
Levenson et al. [14] Copyright 1963, Société Francaise d'Engenieurs et Techniciens du Vide.

Now consider Fig. 2.5b, in which the two tubes (each with I/d = 1) have been
brought together. The transmission probability of each tube separately is (from Table
2.5) 0.514. However, the transmission probability for the joined tubes (//d = 2)is 0.357
and not 0.514/2 = 0.257. :

Clearly the method of combining transmission probabilities for the joined tubes is
incorrect. In this case every molecule which crosses plane AA also crosses planc BB
and vice versa, but this is not so when the tubes are separated by a large volume.

Oatley [19] discussed the correct method of combining transmission probabilities,
% and a,, for two joined tubes of the same cross section and showed that the net
transmission probability is given by ' -

+— —1. | 239

In the example above, this gives the overall transmission probability as 0.346, which is
much closer to the correct result. The Oatley method gives results with a maximum
error of 5% or 6% for Ijd~2. 1t is, perhaps, surprising that the method gives such
good results, since the derivation assumes random gas entry into the second tube and
thus ignores the beaming effect. However, in short ducts the molecular distribution is
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Fig. 2.5. Combination of two short tubes.

not too seriously perturbed from a chaotic distribution, and in long ducts the entrance
effect is relatively small.

The transmission probabilities for each of the two tubes, in effect, includes an
entrance correction. Thus, when Eq. (2.38) is applied, the overall transmission prob-
ability includes two entrance effects. This is correct when the two tubes are separated
by a large volume but not when they are joined and the Oatley method is equivalent
to removing one of the two corrections.

A typical case is illustrated in Fig. 2.6, in which a pump is connected to a chamber
via a tube of the same size as the pump infet. The pump speed (S) has been measured,
so that any entrance effects are already accounted for (at least in principle). A pump
can be regarded as a conductance with a transmission probability ay equal to its Ho
coefficient (the ratio of the pump speed to the conductance of the pump inlet aperture).
If C, is the pump and tube aperture conductance and « is the tube transmission
probability, then § =ayC, and the tube conductance C equals «C,. The net speed at
the chamber is then §, = o,C,, where

111
L S (2.40)
%, g o
Alternatively,
11 1/1 1 11
rr oy, r 241
5,78 +'c,,(a 1) ste " C @241)

The effect of this procedure is to remove an entrance correction.




FLOW OF GASES THROUGH TUBES AND ORIFICES

Chamber l

H—

Fig. 2.6. Pump connected via a tubs of the same diameter,

If the pump speed is 300 liter s~ and the connecting tube is 200 mm long and
100 mm in diameter, then Ca =908 liter-s™* (for air), « (for I/d = 2) = 0.357, and

11 N 1 1 .
S, 300 ' 908 \0.357 ’

which gives S, = 188 liters™* [instead of 155 liter-s~* using Eq. (2.34)].

An addition theorem developed by Haefer [20] enabiles the calculation of multiple
components of differing diameters. The overall transmission probability of # elements
41, is related to the individual transmission probabilities «; and inlet areas A; by

171 "1 /1 n-1/ 4 1
A\ T HITAT N — —— 5. . :
4, (ocl,, 1) ;A;— (ai 1)+ ; (Am A,-) wivr (242)

Siie1=1 for 4i+1 < A; (reducing cross-sectional area)

Oiiv1 =0 for 4,,, > 4; (no reduction in cross-sectional area).
The overall transmission probability a,, is expressed in terms of the inlet tube
aperture.

Some cases of the application of this theorem will be discussed with reference to
Fig. 2.7.

(a) Series Arrangement of Tubes of Different Diameters (F ig. 2.7a). The over-
all transimission probability is

1'-~i+A1 1 )4 A1 1)+
X1ip —051 A \ay A; \og A,




2.2, MOLECULAR FLOW 101

A 4 4

A,y A,

B
L]
v
v
B
&

(a) )] (c)

Fig. 2.7. Combinations of components.

The diameter increases from tube 1 to tube 2 so that dz,1 = 0, but 85, = 1 since the
5 diameter decreases from tubes 2 to 3. 1If I/d = 2 for each tube and the diameters are
d 15 mm, 25 mm, and 20 mm for tubes 1, 2, and 3 respectively, then o4, evaluates to
\ 0.214. The aperture conductance of tube 1 (15-mm diameter) is 204 liter-s™ ', so the
* conductance of the arrangement is 0.214C,, = 4.38 liter-s™ L [f the order of the tubes
is reversed (20 mm, 25 mm, 15 mm), oy, now evaluates to 0.121. The inlet aperture
conductance (for 20-mm diameter) is now 36.3 liter-s™ %, so the overall conductance
is 0.121 % 36.3 = 4.38liter's~ ! a5 expected. The conductance of an arrangement
; cannot be changed by reversing the order of components; but note that if the tubes
e | were rearranged in ascending order of size, then o), = 0.224. It is generally the case
1ts that the highest conductance for a serics of components is achieved when they are
L physically arranged in order of size. In a calculation, the temptation to reorder the
components for mathematical convenience should be resisted since this can lead to
A incorrect results.
12) Equation (242) relating transmission probabilities can be expressed in terms of
- conductances:

1 1 {1 | LA | 1
— = - I TN 2.44
Cln Cal +21:(le Cai) * 21: (Cai+1 Cai) hivd ( ]

which is more convenient if conductance values are given for components. 6 has the
same meaning as in Eq. (242).

be. a The first summation in Eq. (2.44) contains the “tube only” conductance C, dis-
. ‘ cussed by Holland et al. [21]:
0
i 1
| Cos = (—C; -z ); (243)
er-
that is, a tube with its entrance correction subtracted. If the conductance quoted for
a component is the “tube only” value then the entrance correction should not be
subtracted. A typical example would be a quarter swing valve which is not designed
for direct connection to a large chamber but is normally connected via a manifold.
43) Similar remarks apply to Eq. (242) if the tube only transmission probability is given.
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Either of Eqgs. (2.42) or (2.44) can be used to find the net speed of a pump in series
with a set of components.

(b) Pump Connected to a Chamber Via Two Tubes or Components(Fig. 2.7b)

1_1 + 1 1 + 1 1 + 1 1 + i 1
85 Ca \Cm Cau Cuz  Caz Cuz  Cus Cos Cam/

(2.46)

Since C,,3 = azC,; = S, this reduces to

1

=1 41 +
Sn le sz

(247)

Ll =
O
[

which can be written

1 1 1 1 1 1 1 1 :
(L 1 2 1 24
5, (Cm . ) + (cal Cur ) + (sz s ) 3 24%)

Written in terms of “tube only” conductances, this becomes

1 1 1 1 1 i
o _ S 2.49
S G T (c,u Cn ) T TS 249)

The second term on the right-hand side of this equation can be seen as the total
correction required to account for the differing sections (remembering that a correc-
tion for A; is inherent in the pump speed).

If, in Fig. 2.7b, tubes 1 and 2 and the pump all have the same aperture size of
conductance C,, then Eq. (2.48) becomes :

1 1 1 1 1 1
= — = Y — 2 )41 2
3 (Cm ca)+(cmz ca)+s (2.50)

Each tube has its entrance correction subtracted and only one correction, inherent in
the pump speed, is applied,

{c) Pump Connected to a Chamber Via a Second Chamber (Fig. 2.7¢). This
case is equivalent to making C,, and C,;, very large in Eq. (2.47), giving-

1

1
5o ts (2.51)

Ll =
R A i s

In this case the entrance correction for tube 1 is retained.

2.2.11. Cases of Unsteady Flow. Consider a system in which a pump is connected
to a vessel via a valve and a pipe of some significant length. It is clear that, at the
instant that the valve is opened, the throughputs at the pump and vessel must be
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different. Some time is required for continuity to be established. Usually this is very
short compared with the timescale for exhaust of the vessel, especially at continuum
flow pressures where the pipe conductance is relatively high. However, if the “vessel”
is a long pipe, then steady conditions are never achieved.

Unsteady flow is of most interest under molecular flow conditions and is parti-
cularly relevant to filling, exhaust, or leak testing of long pipelines. Mathematicaily,
unsteady molecular flow in a constant section duet is analogous to heat conduction in
an infinite slab. Both can be treated as one-dimensional since there is no transverse
flow. The cases described here are intended only as a small sample to illustrate the
kind of unsteady flow problems that can be solved. Solutions for many heat conduc-
tion cases, which have practical parallels in molecular flow, are available in the
literature; Carslaw and Jaeger [22] is a good source of reference,

In the equations which follow, V is the volume and C the conductance of the pipe,
assumed to be long. Given a relation for pressure distribution, the throughput (from
or into the pipe} can be obtained from the pressure gradient at the end of a pipe:

. dp
o-alf) 252

Case 1. Pipe with uniform initial pressure P, closed at x —

0. x =1 opened to an
environment maintained at constant pressure P, at t =

e _py e U _ 2w C mx
P_'Pe_n_(PO Pe)ngomexp{ Cn+1) 4?t}cos[(2n+l)il:l.

(2.53)

This covers both exhaust and filling of a pipe. Lawson [23] discussed the application
of this and similar cases to pumping of trapped volumes and leakage.
The time constant for the first (slowest) term is

_ 4

TEZ

al=

T=Tp

, (2.54)

Contrast this with the time constant of a chamber of volume ¥ pumped at speed S or
through a restrictive conductance C (covered in Chapter 9).
For air at 20°C (f and d in meters) we have

2

7o = 0.00263 IE sec, (2.55)

and for helium we have
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A l-meter-long pipe, 10 mm in diameter would have a time constant for helium of

~100 msec. For a pipe length of 10 meters, this increases to ~10 sec, Leak testing can
be difficult with a detector at the downstream end of such long lines since any leak will
be located at the position of the helium probe several seconds prior to the indication
on the leak detector gauge.
The series converges quite rapidly and taking only the first term is a good approxi-
mation for ¢ > 0.37,. Thus, taking only the first term we obtain, at x =0

4 n? C ‘
P—Pe=E(Po—Pe)eXP(—T“F ) (2.57)
and the throughput
0 =2C(Py ~ Pexp( = 2 E (2.58)
- 4] e/ CXp 4 v . .

Case 2. Pipe, with constant initial pressure Py, closed at x =
other end by a pump of constant speed S, for ¢ > 0.

x
» cos(qb,,j)secqﬁ,, ,C
P= P021v-n§1 oS exp(— hZ 7 t), (2.59)

whete r = §/C and ¢, are the roots of

0 and pumped at the

ptang = —g— . _ | {2.60)

A good approximation for the first root is

S _ (2.61)

accurate to within 3% in the worst case, .
Taking only the first term of the series for throughput, we obtain

Q0 =2P,S ;(I%l_t?)n—f})—f exp(— qb%—g t). (2.62)

For § < C the time constant becomes V' /S and the case reduces to the simple pumpout
of a large chamber. '

Case 3. Pipe with zero initial pressure. Constant le

ak Oy, into the pipe at x = 0 and
constant pumping speed S at x = for ¢t > Q.
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This is again relevant to leak test of a long pipeline since the initial partial pressure
of He will be zero.

o (@7 +r)cos (cﬁ,.f)
p 1+r( ’:)—Zr ¥ : exp(‘— ¢2£r) . (263)

WSt Galr(r + 1) + 677 "V

where r = §/C and ¢, has the same meaning as in Case 2.
Taking only the first term, the throughput from the pipe is

_ (¢1 + r?)sin ¢, €
0= QL{I - 2!:451[?(" P exp( @2 7 t):l} (2.64)

2.3. CONTINUUM FLOW

In the continuum regime, calculation of gas flow through ducts is complicated by the
different types of fiow which can occur. Flow may be broadly distinguished into two
major types, referred to as viscous laminar flow and turbulent flow. Since flow through
a duct is driven by a pressure difference, all gas flow is compressible. There are
circumstances in which gas can be treated as incompressible, and this leads to
considerable simplification of the equations describing flow. However, there are also
many circumstances in which compressibility cannot be ignored, so compressible flow
will also be discussed.

Continuum (or viscous) flow is often thought of as occurring at relatively high
pressures. But consider air flowing through a 100 mm (4 inch) diameter pipe. From Eq.
(2.2) the Knudsen number Kn is < 0.01 (and hence the flow continuum) down to
pressures of about 0.1 mbar. Thus many vacuum processes will operate at pressures
where continuum flow conditions prevail.

At relatively low velocities, gas flows smoothly in stream lines, generally parallel to
the duct walls, and the flow is said to be laminar. In long ducts, viscosity of the gas is
a controlling factor in the fiow rate; this is not the case in short ducts, although the
flow may still be laminar. As the flow velocity is increased, there comes a critical point
at which the flow breaks up into turbulent eddies. These two types of flow, viscous
laminar and turbulent, are described by different equations. It is important to
distinguish these flow types in calculation of flow rates; failure to do so can lead to
wildly inaccurate results. In short ducts, or in longer ducts at high fiow velocities,
compressibility becomes important and use of incompressible flow formulae can also
lead to serious errors.

The primary controlling parameter in the viscous behavior of Newtonian® fluids is
the dimensionless Reynolds number

puby
" E

Re = (2.65)

* Newtonian fluids are those in which the shear stress is proportional to the transverse velocity gradlent
Most commeon fluids (watet, oils, and gases) are newtonian.




