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FLOW OF GASES THROUGH 

TUBES AND ORIFICES 

R. Gordon Livesey 

The nature of gas flow in pipes and ducts changes with the gas pressure and its 
description is generally divided into three parts or regimes. The flow dynamics are 
characterized by A, the molecular mean free path, in relation to some characteristic 
dimension such as the diameter of a pipe. The flow regime cannot be determined from 
the mean free path alone but only from the relation of this parameter to the 
characteristic dimension. The relation is known as the Knudsen number, defined as* 

1 
Kn=d' 

Three regimes are generally identified: 

(2.1) 

1. Free Molecular Flow. The mean free path is of the same order as, or greater 
than, the characteristic dimension (the range of relatively large Knudsen numbers)~ 
and gas dynamics are dominated by molecular collisions with the walls of the 
retaining vessel or pipe. 

2. Continuum Flow. The mean free path is small compared with the characteristic 
dimension (the range of small Knudsen numbers), and intermolecular collisions are 
much more frequent than wall collisions. In this regime the properties of the gas 

* In the literature the Knudsen number may be variously defined, for a cylindrical tube. as AId, dj)." AIR, 
or RjA. 
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82 FLOW OF GASES THROUGH TUBES AND ORIFICES 

(temperature, density, flow velocity) do not vary significantly over several mean free 
paths and the gas can be considered a continuous medium. The gas dynamics are 
therefore described and analysed hydrodynamically. Flow in this regime is often 
referred to as viscous flow, although there are circumstances (such as flow through 
short ducts) in which viscosity plays no part. 

3. Transitional Flow. The transition between continuum and free molecular flow 
occurs at intermediate values of the Knudsen number where both wall collisions and 
intermolecular col1isions are influential in determining the flow characteristics. 

Expressed in terms of pressure and characteristic dimension the Knudsen number is 

For air at 20oe, with d in mm and Pin mbar we obtain 

K 
_ 0.066 

n- Pd . 

(2.2) 

(2.3) 

Table 2.1 shows t.he generally accepted range of Knudsen numbers for the three 
regimes. There is no sharp transition between the regimes, and somewhat different 
values may be quoted by different authors. The gas factor Fg in the table, used to 
correct for different gases, is the ratio of the mean free path for air to that of the gas 
under consideration (at the same pressure and temperature) and can be calculated 
from 

F - A", _ ~a', JM ... 
g- - . 

.A.gas 1'/ gas M air 
(2.4) 

Values of the gas factor for a number of common gases are shown in Table 2.2. 
Applications of vacuum technology range from the lowest pressures attainable 

« 10- 14 mbar) through to around atmospheric pressure, so that all of the regimes 
described are of interest to workers in this field. One of the main aims of this chapter is 
to enable calculation of flow under as wide a range of conditions as possible, so that 
a large number of flow equations is presented. The widespread availability of scientific 
calculators) personal computers, and mathematical software means that some of the 
more cumbersome formulae are considerably less daunting than in times past. 
However, the "back of an envelope" is stm a much favored tool of scientists and 
engineers and rough calculations are often sufficient, so that approximations will be 
given wherever possible. Equations for the molecular, continuum and transitional 

Table 2.1. Flow Regimes versus Knudsen Number and Pressure 

Regime 

Molecular 
Transitional 
Continuum 

Kn (A/d) 

Kn > 0.5 
0.5> Kn > 0.01 

Kn < 0.01 

P (mbar), d (mm) 

PdFg < 0.133 
0.133 < PdF 9 < 6.6 

PdFg > 6.6 



2.1. FLOW CONDUCTANCE, IMPEDANCE, AND GAS THROUGHPUT 83 

Table 2.2. Properties of Some Common Gases at 20°C 

Relative 
Molecular Viscosity Viscosity Ratio 

Gas Mass Pa' s x 10-6 (Air/Gas) ~ 

H2 2 8.8 2.07 0.543 
He 4 19.6 0.929 0.345 
H20 (vapor) 18 9.7 1.88 1.48 
N2 28 17.6 1.93 1.02 
Air 29 18.2 1 1 
O2 32 20.4 0.892 0.937 
Ar 40 22.3 0.818 0.959 
CO2 44 14.7 1.24 1.53 

regimes are discussed in Sections 2.2, 2.3, and 2.4, respectively. For the most part, 
derivations are not given since there are textbooks and papers where the basic theories 
a~e discussed extensively; several references are listed in each section for the reader 
interested in studying the subject in more detail. 

All equations are written at least once in the text in SI units; where numerical 
coefficients are given~ the units used are stated. 

Except for the discussion of adiabatic compressible flow, it is generally assumed 
throughout this chapter that isothermal conditions apply. 

2.1. FLOW CONDUCTANCE, IMPEDANCE, AND GAS THROUGHPUT 

In the field of vacuum science and technology it is common practice to express gas 
flow rate as throughput in pressure-volume units. The symbol Q is normally used and 
the throughput of gas at a particular pressure is then 

If the volumetric flow rate is due to a pump 

dV 
A=p_ =PS 
\t dt ' 

where S is the speed (or volumetric rate) of the pump at the pressure P. 

(2.5) 

(2.6) 

The pumping speed available at a chamber will be affected by restriction due 
to connecting pipework. One of the most common problems in vacuum technology is 
to estimate the loss in speed due to such restrictions (system design is covered in 
Chapter 9). . 

Knudsen [1] first introduced the notion of a pipe as an impedance or resistance in 
the electrical sense and Dushman [2] introduced the concept of conductance) which is 
defined by the relation 

(2.7) 
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where Pf,I is the upstream pressure and Pd is the downstream pressure. These pressures 
normally refer to values in (perhaps notional) plenums at the entrance and exit of 
a duct or a system fitting such as a valve. Gas flow conductance is thus analogous to 
electrical conductance, with pressure difference being the analogue of voltage differ­
ence and Q the analogue of current. The reciprocal of conductance (resistance or 
impedance, Z = 1/C) could equally wel1 be used; however, conductance has come into 
common usage in vacuum technology mainly because of its intuitive relation to 
volume flow rate and pumping speed. 

Applying this concept to a set of pipes or components in series, the net conductance 
is found from 

(2.8) 

The net speed of a pump in series with a component or pipe is found in a similar way: 

(2.9) 

In practice it is seldom quite so easy as these equations imply. Some care is needed 
with combinations of components, and this is discussed in Section 2.2.10 in relation to 
molecular flow. In continuum flow, conductance depends in a complicated way on the 
flow conditions, and a better approach is to calculate the pressure ratio (Kp) across 
a component or series of components. 

It is usually assumed that continuity applies through a system; that is, the through­
put is the same through all sections. This will be the case as long as sufficient time has 
elapsed (from opening a valve or starting a pump for example) and there are no 
temperature differences between the points of interest. In many common situations, 
steady conditions are a reasonable assumption. (Some cases of unsteady molecular 
flow are covered in Section 2.2.11.) If Pd is the inlet pressure to a pump of speed 
S which is connected via a pipeline or component to a chamber, then, assuming steady 
conditions, the speed (SIl) and pressure (Pf,I) at the chamber are simply related by 

so that 

S 
K' p 

(2.10) 

(2.11) 

In this way, the net pumping speed can be found if the pressure ratio can be calculated. 
From the definition of conductance 

(2.12) 

Dividing through by the downstream pressure JPd and rearranging gives 

(2.13) 
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This calculation is often easier than taking the reciprocal of a sum of reciprocals, and 
Kp is the factor by which the pumping speed is reduced. 

2.2. MOLECULAR FLOW 

One of the fundamental assumptions in the derivations of molecular flow conductance 
is that molecules scatter from a surface according to a cosine distribution. This is also 
referred to as diffuse or random scattering and means that· there are no favored 
directions. A scattered molecule has the same probability of emerging in any direction, 
and this is unrelated to its direction of incidence. There are special circumstances in 
which nondiffuse scattering may occur, but for microscopically rough surfaces the 
diffuse scattering law is well established theoretically and experimentally [3-5]. 

Figure 2.1 shows the distribution of molecules emerging from an aperture and from 
tubes of various lengths. The lengths of the vectors are proportional to the number of 
molecules emerging in that direction. It is noticeable that the longer the tube, the more 
heavily weighted is the emerging flux to the tube axis. This is an indication of what 
occurs inside a tube. An observer close to the entrance (looking upstream) will see the 
entrance plane as a diffuse source. Deep inside the tube an observer will see a pertur­
bed flux which is peaked toward the axis. This is often referred to as the beaming effect 
of a tube. 

The aperture in Fig. 2.1 acts as a plane cosine emitter, and the molecular flux shows 
a spherical distribution. At small angles to the plane the flux of molecules is reduced, 

Fig. 2.1. Angular distribution of molecules exiting tubes of various length-to-diameter ratios. Repro­
duced with permission from L. Valyi, Atom and Ion Sources, p. 86. Copyright 1977, Akademial Kiad6, 
Budapest. 
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compared with larger angles. This is not because there is a preferred direction but is 
a consequence of the angle of view: The emitting plane does not appear "dimmer/' 
simply smaller. 

In the molecular regime, solution of gas flow problems can be reduced to finding the 
conductance of the elements involved since conductance is independent of pressure or 
flow conditions. The derivation of conductance, by theoretical or analyticostatistical 
methods, assumes that molecules arrive at the entrance plane of a duct from a chaotic 
gas, so that the entrance plane effectively behaves as a diffuse (cosine) emitter. When 
vacuum components are connected in series~ this may not be the case and some 
correction is needed; this will be covered in Section 2.2.10. 

Clausing [6] first introduced the concept oftransmission probability, denoted by ri. 
If N2 molecules arrive at the entrance plane of a duct then the number of these which 
reach the exit plane is N2 cx, and N2(1 - ri) return to the entrance. Similarly, of 
N 1 molecules striking the exit plane (from a downstream chamber), N 1 ri reach the 
entrance. The net flux of molecules from entrance to exit is then (N2 - Nt)rJ.. Although 
proportional to the pressure difference across the duct, the net flux is not driven by 
a pressure difference; it actually consists of two independent fluxes, and there is not 
a flow in the usual sense of the word. Some of the molecules which enter the duct will 
return to the entry plane after one or more wall collisions. The flow dynamics are thus 
very different to the continuum flow case in which all molecules crossing the entrance 
plane will leave the exit (apart from the possibility of back diffusion which can occur in 
some circumstances). 

Expressions for conductance are usefully formulated in terms of transmission 
probability, so that the conductance of a duct (or other component) is given by the 
entrance aperture conductance mUltiplied by the transmission probability 

(2.14) 

2.2.1. Conductance of an Aperture 

The molecular flow conductance of a thin aperture is directly related to the rate of 
impingement of molecules over the aperture area A (discussed in Chapter 1): 

(2.15) 

where Ro is the universal gas constant, T is the thermodynamic (or absolute) 
temperature, and Mm is the molar mass (e.g., 0.028 kg/mole for nitrogen). 

This gives the familiar result that the molecular flow conductance of an aperture for 
air at 20°C is 11.6 liters per second per square centimeter. 

For air at 20°C, Eq. (2.15) can be written in the convenient form 

(2.16) 

and Table 2.3 gives values of the constant ka for several combinations of commonly 
used units. 
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Table 2.3. Aperture Conductance for Air at 20°C in 
Various Units 

Co = kaA 

Ca ka A 

m3 's- 1 115.6 m2 

liter- S-1 11.56 cm2 

liter' S-1 0.1156 mm2 

m3 'h- 1 0.4163 mm2 

cfm 0.245 mm2 

cfm 158.1 in.2 

liter's- 1 74.62 in.2 

2.2.2. General Considerations for Long Ducts 

Molecular flow in long ducts was first studied experimentally and theoretically by 
Knudsen [7]. He deduced a general relationship for a long duct of length I, varying 
cross~sectional area A and perimeter B, which can be written as 

(2.17) 

where Va is the mean thermal velocity of molecules. 
However, as discussed by Steckelmacher [8, 9], Eq. (2.17) gives the correct result 

only in the case of a long cylindrical tube and leads to erroneous results for all other 
cross sections. 

A correct expression was derived by Smoluchowski [10] which may be written 

, Va I I+1r./2 1 2 Cml = 81 -2 P cosO dO ds, 
s -n/2 

(2.18) 

where p is a chord making an angle 0 with the normal to the perimeter s. Expressions 
for a number of different cross sections have been derived from Eq. (2.18). 

2.2.3. General Considerations for Short Ducts 

For small values of 1 it is clear that the long duct relation will give values for 
conductance which are too high. As the length tends to zero the conductance 
apparently tends to infinity. Reasoning from the point of view that the entrance of 
a duct can be considered as a vacuum circuit element with resistance Za = 1/Ca in 
series with the duct proper (regarded as a "long" duct), of resistance Zml = IjCmb the 
net conductance is [applying Eq. (2.8)] 

(2.19) 
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Using this principle, the net transmission probability of a short duct then becomes 

ct., 
ct.=~-, 

1 + IX, 

where IX, is the long duct transmission probability. 

(2.20) 

This principle was originally applied by Dushman [2] to short circular cross­
sectional tubes as an approximate method of correcting for the end effect. A similar 
logic is often applied to short ducts of other cross sections. The maximum error for 
a cylindrical tube is about 120/0 (too high). Errors ofthis order are expected for blocky 
cross sections, but for other cross sections the errors may be more serious. In the case 
of narrow rectangular ducts the errors can be greater than 500/0. The most accurate 
results are obtained using transmission probabilities which have been derived for 
a number of different shapes either theoretically or via Monte-Carlo methods. 

Transmission probability data for cylindrical tubes, from the results of Cole [11], 
are shown in Table 2.5. It is apparent that the transmission probability for a unit 
length increases as the length of the duct increases. Consider a unit length lJd = 1 for 
which (J. = 0.514. For two unit lengths (IJd = 2) the transmission probability, expected 
from the shorter length, would be 0.257, whereas the actual value is 0.357. At 10 unit 
lengths the transmission probability is almost twice the expected value. This reflects 
the effect of the random molecular distribution near the entrance compared with the 
beamed distribution which evolves further down the tube. 

2.2.4: Tube of Uniform Circular Cross Section 

Long Tubes. The familiar expression for the conductance of a long cylindrical tube 
of diameter d was first presented by Knudsen [7] in 1909: 

(2.21) 

It can be seen from Eq. (2.21) that the transmission probability for a long cylindrical 
tube is 

(2.22) 

Berman [12] derived the solution as an asymptotic expansion, the first four terms of 
which are 

IX = 4d _ ~ (~)\n(21) _ 91 (~)2 + ~ (~)31n(21) ... (2.23) 
c 31 2 1 d 72 1 3 1 d . 

For 1 ~ d this reduces to Eq. (2.22) (which needs significant correction for 1 < SOd). 
Table 2.4 lists values oflong tube and aperture conductance for a number of gases. 
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Table 2.4. Conductance of Long Cylindrical Tubes and Apertures for Air at 20°C 

Relative Cml (l/d~) ColA Ca/d2 

Molecular liter' S-1 liter- S-1 liter' S-1 

Gas Mass (mm) (mm) (mm) 

H2 2 0.461 0.440 0.346 
He 4 0.326 0.311 0.245 
Air 29 0.121 0.116 0.0908 
Ar 40 0.103 0.0985 0.0773 

Short Tubes. Transmission probabilities for short tubes derived by Cole [11] are 
shown in Table 2.5. Berman [12] presented equations for the direct calculation of ('J. for 
any length. 

Table 2.5. Transmission Probabilities for Cylindrical Tubes 

lid Ct (Cole [11]) ex [Eq. (2.20)J % Error 

0.05 0.952399 0.963855 - 1.20 
0.15 0.869928 0.898876 - 3.33 
0.25 0.801271 0.842105 - 5.10 
0.35 0.743410 0.792079 - 6.55 
0.45 0.694044 0.747664 -7.73 
0.5 0.671984 0.727273 - 8.23 
0.6 0.632228 0.689655 -9.08 
0.7 0.597364 0.655738 -9.77 
0.8 0.566507 0.625000 - 10.33 
0.9 0.538975 0.597015 -10.77 
1 0.514231 0.571429 -11.12 
1.5 0.420055 0.470588 -12.03 
2 0.356572 0.400000 - 12.18 
2.5 0.310525 0.347826 - 12.01 
3 0.275438 0.307692 -11.71 
3.5 0.247735 0.275862 -11.35 
4 0.225263 0.250000 -10.98 
4.5 0.206641 0.228571 -10.61 
5 0.190941 0.210526 -10.26 

10 0.109304 0.117647 -7.63 
15 0.076912 0.081633 - 6.14 
20 0.059422 0.062500 - 5.18 
25 0.048448 0.050633 -4.51 
30 0.040913 0.042553 -4.01 
3S 0.035415 0.036697 -3.62 
40 0.031225 0.032258 - 3.31 
45 0.027925 0.028777 - 3.05 
50 0.025258 0.025974 - 2.83 

500 0.002646 0.002660 - 0.51 

Defining 

1 I 
Y=- =-

2R d 
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we obtain 

1 
2 ~1 [(2 - y2)JY2+1 + y3 - 2]2 

lX = + y - yy y +.1 - . 
4.5yp+t-4.5ln[y + Jy2 + 1] 

(2.24) 

This gives results which agree with the Cole [11] data to within 0.13%
• 

Santeler [13] devised a simpler and more convenient formulation and calculates the 
transmission probability as 

1 
(2.25) 

where le is an "equivalent length" and 

This gives transmission probabilities with a maximum error ofless than 0.7% relative 
to the Cole data. 

2.2.5. Duct of Uniform Rectangular Cross Section 

The convention used to denote dimensions of rectangular (and elliptical) ducts is as 
follows: a and b are the cross-sectional dimensions, with b ~ a, and 1 is the length in 
the direction of gas flow. Thus the cross-sectional area is A = abo To avoid any 
confusion, equations quoted from various authors have been recast to conform with 
this convention. 

Long Ducts. The transmission probability, due to Smoluchowski [10], is 

= ~ [In(£5 + ~) 1 (1 + ~ ) 1 + £53 - (1 + £52) 3/2 ] (2.26) 
lX, 1 b + n b + 3b2 ' 

where b = alb and I ~ b. 
A useful approximation is 

(2.27) 

This is accurate to better than 1 % for aspect ratios (bJa) up to almost 100. The error 
increases slowly with aspect ratio but is still only 1.90/0 and 2.40/0 for aspect ratios of 
1000 and 10,000, respectively. 
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Short Ducts. There appear to be no general expressions which cover the whole 
range of lengths and aspect ratios. Data are available from the Monte Carlo calcu­
lations of Levenson et al. [14]. The results of Santeler and Boeckmann [15], which 
cover a greater range of lengths and aspect ratios, are shown in Table 2.6 (for short 
ducts the original data are listed to six significant figures). Also shown for comparison 
in Table 2.7 are some of the results of Cole [16], derived using a complementary 
variational method which gave upper and lower bounds for a; the values listed are the 
means and are accurate to 1.2% or better. 

Table 2.6. Transmission Probabilities for Rectangular Ductsll 

bJa 

IJa 1 1.5 2 3 4 6 8 12 16 24 

0.01 0.9902 0.9918 0.9926 0.9934 0.9938 0.9942 0.9944 0.9946 0.9947 0.9948 
0.02 0.9807 0.9839 0.9854 0.9870 0.9878 0.9885 0.9889 0.9893 0.9895 0.9897 
0.04 0.9626 0.9685 0.9715 0.9744 0.9759 0.9774 0.9782 0.9789 0.9793 0.9797 
0.07 0.9370 0.9467 0.9515 0.9564 0.9589 0.9613 0.9625 0.9638 0.9635 0.9650 
0.1 0.9131 0.9260 0.9326 0.9392 0.9425 0.9458 0.9475 0.9491 0.9500 0.9508 
0.2 0.8428 0.8645 0.8757 0.8869 0.8926 0.8982 0.9011 0.9039 0.9053 0.9067 
0.4 0.7334 0.7659 0.7829 0.8004 0.8093 0.8182 0.8227 0.8272 0.8295 0.8317 
0.7 0.6178 0.6575 0.6793 0.7022 0.7140 0.7260 0.7321 0.7381 0.7411 0.7442 
1 0.5363 0.5786 0.6026 0.6285 0.6421 0.6560 0.6631 0.6702 0.6737 0.6773 
2 0.3780 0.4192 0.4444 0.4733 0.4893 0.5063 0.5150 0.5240 0.5285 0.5330 
4 0.2424 0.2759 0.2977 0.3245 0.3404 0.3583 0.3679 0.3781 0.3833 0.3885 
7 0.1596 0.1848 0.2020 0.2242 0.2380 0.2545 0.2639 0.2742 0.2796 0.2852 

10 0.1195 0.1397 0.1537 0.1723 0.1843 0.1991 0.2078 0.2177 0.2230 0.2287 
20 0.0655 0.0776 0.0864 0.0984 0.1066 0.1171 0.1238 0.1319 0.1366 0.1419 
40 0.0346 0.041 0.0464 0.053 0.058 0.0652 0.0695 0.075 0.078 0.083 
70 0.020 0.024 0.0275 0.032 0.035 0.039 0.042 0.046 0.048 0.052 

100 0.014 0.017 0.019 0.023 0.025 0.028 0.030 0.033 0.035 0.038 

a From Santeler and Boeckmann [15]. 

Table 2.7. Transmission Probabilities for Rectangular Ducts'" 

bJa 

lJa 1 5 10 20 50 100 1000 10000 

1 0.53619 0.66722 0.68266 
4 0.24233 

10 0.11930 0.21280 0.2372 0.2400 
20 0.11207 
40 0.07234 
80 0.04464 

100 0.01438 0.0320 0.0438 0.0464 0.0468 
200 0.0224 
400 0.01295 

a From Cole [16]. 
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For short slits (or large flat plates): Values of transmission probability were first 
calculated by Clausing [6]. Berman [12] devised equations for the direct calculation 
of transmission probability to a greater accuracy than the tabulated Clausing values. 

For b ~ a and b ~ 1 and putting x = l/a we obtain 

iX, = 0.5[1 + ,JI+7 - x] _ 1.5[x -In(x + JT+~. (2.28) 
X3 + 3x2 + 4 - (Xl + 4) 1 + Xl 

If 1 ~ a (long, closely spaced slot, again with b ~ a, b ~ 1), this equation simplifies to 

(2.29) 

2.2.6. Uniform Elliptical Cross Section 

a and b are the minor and major axes, b ;;::: a 1 ~ b; 

Long Ducts. The expression derived from Eq. (2.18) by Steckelmacher [8] is 

(2.30) 

where 

is the complete elliptic integral, and 

Steckelmacher [8] has shown that, for the same aspect ratio and cross-sectional area, 
the expressions for a rectangular duct (Eq. (2.26)] and an elliptical duct are in close 
agreement. The rectangular duct approximation was derived on this basis, so that 
a similar approximation is available for the elliptical duct: 

a (b 3a) 
C(e = 0.856,ln 4 a +"4 b . (2.31) 

The constant is chosen to give the correct result for b = a (circular) and minimises the 
errors for practical aspect ratios up to 10 (although the errors are less than 1 % even 
for unrealistically large aspect ratios up to 1000). 
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Generally for ducts which have cross sections inteqnediate between rectangular 
and elliptical we have 

(2.32) 

where a,. is the rectangular duct transmission probability and 

(2.33) 

Short Ducts. No data are available for short ducts of elliptical or similar cross 
section. However, it is expected that the similarity between long elliptical and 
rectangular ducts (of the same cross-sectional area and aspect ratio) will also apply to 
short ducts. It is suggested that approximate transmission probabilities can be found 
from 

(
1 + l/a) 

as = Ys rs + l/a a,.. (2.34) 

For very short ducts this reduces to as = C(r since the transmission probability of an 
aperture is independent of shape. 

2.2.7. Cylindrical Annulus (Flow Between Concentric Cylinders) 

d2 = outer diameter, dt = inner diameter, 

Long Ducts 

(2.35) 

where K (e2
) and E (e2

) are the complete elliptic integrals of the first and second kinds. 
X(e) is listed for a range of values of e in Table 2.8. 

Short Ducts. Table 2.9 presents the results of Berman [17], who calculated transmis­
sion probabilities over a large range using the variational method. Berman also 
obtained an empirical expression which is more convenient for computer calculation. 
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Table 2.8. The Function X(e) ~or a Long Cylindrical Annulus [Eq. (2.31)] 

e = d1/d2: 0 0.1 0.2 0.3 
X (e): 1.3333 1.231 1.1238 1.0116 

e = dt/d2 : 0.6 0.7 0.8 0.9 
X(e): 0.6416 0.5044 0.3576 0.1966 

Defining x = 1/(d2 - d1), we obtain 

with 

1 

eta = [ (2 )] 1 +x 1-2u tan- 1 
: 

0.0741 - O.014e - 0.037e2 

u = --1---O-.9-1-8e-+-0-.O-5-e-;:;"2-

5.825 - 2.86e - 1.45e2 

V = 1 + O.S6e - 1.28e2 • 

0.4 
0.8942 

.0.95 
0.1071 

The expression is valid in the range 0 S x S 50 and 0 S e ~ 0.9. 

2.2.8. Uniform Triangular Section (Equilateral) 

a = length of sides, 

A = V; a2 = 0.43302
, 

Long Ducts 

0.5 
0.7711 

1.0 
0 

(2.36) 

(2.37) 

Short Ducts. Approximate transmission probabilities can be obtained using the 
entrance correction principle [Eq. (2.20)]. 

2.2.9. Other Shapes 

Transmission probabilities for a number of geometries are shown in graphical form in 
Figs. 2.2 [18],2.3, and 2.4. It is worth noting that the transmission probability for an 



Table 2.9. Transmission Probabilities (x 104
) for Cylindrical AnnulusB 

Y 1/(R2 R t ) 0.1 0.2 0.25 0.4 0.5 

0.5 8017 8022 8030 
1.0 6737 6754 6783 
1.5 5842 5867 5915 
2.0 5175 5206 5266 5295 
2.5 4655 4690 4758 
3.0 4237 4274 4348 
3.5 3893 3931 4007 
4.0 3604 3642 3661 3720 3761 
5.0 3123 3181 3260 
6.0 2791 2828 2906 2948 
7.0 2513 2548 2625 
8.0 2286 2321 2339 2395 2436 
9.0 2099 2132 2204 

10.0 1914 1973 2042 2081 
12.0 1819 
14.0 1617 
15.0 1414 1440 1499 
16.0 1381 1456 
18.0 1325 
20.0 1216 
25.0 921.7 941.1 9845 
30.0 
35 
40 
50 496.0 507.6 533.9 

100 258.9 265.4 280.1 
200 132.7 136.1 144.0 
500 53.97 55.4 58.69 

1000 27.15 27.88 2956 
104 2.733 2.807 2.978 
105 0.2735 0.2809 0.298 

a From Berman [17]. 
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Fig. 2.2. Molecular transmission probabilities of an elbow, from the results of Davies [18]. 

elbow is almost the same as two short tubes (with length measured at the inside of the 
elbow) connected by a large volume. The effect of the elbow is to randomize, at least 
partly, the molecular distribution. 

2.2.10. Combinations of Components 

If two components, with transmission probabilities (Xl and (X2, are connected in series, 
then the usual method of determining the net transmission probabiHty is 

1 1 1 
-=- +-. 
(Xn IXl IX2 

(2.38) 
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Fig. 2.3. Molecular transmission probabilities of a cylindrical tube with restricted openings, from the 
results of Davies [18], 

Consider two identical, short tubes, of transmission probability IX, connected via 
a large volume V as shown in Fig. 2.5a. The inlet of tube 2 and the outlet of tube 1 are 
also connected to large volumes and, for convenience, the downstream pressure is 
taken to be zero. It is supposed that there is no beaming between the tubes, and the 
effect of the large volume is to randomize the molecular distribution between the 
tubes. 

The net flux of molecules through tube 2 is (Nl - N 1)rJ., and the net flux through 
tube 1 is NtlX, Under steady conditions, these must be the same, so that Nt = Nz/2 and 
the number of molecules transmitted is N2rx/2. The overall transmission probability of 
the system is then lX/2. The conclusion is the same if the transmission probabilities are 
combined as in Eq. (2.38). 
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Fig. 2.4. Molecular transmission probabilities of a chevron baffle. Reproduced with permission from 
Levenson et al. [14] Copyright 1963, Societe Francaise d'Engenieurs et Techniciens du Vide. 

Now consider Fig. 2.5b, in which the two tubes (each with lId = 1) have been 
brought together. The transmission probability of each tube separately is (from Table 
2.5) 0.514. However, the transmission probability for the joined tubes (lId = 2) is 0.357 
and not 0.514/2 = 0.257. 

Clearly the method of combining transmission probabilities for the joined tubes is 
incorrect. In this case every molecule which crosses plane AA also crosses plane BB 
and vice versa, but this is not so when the tubes are separated by a large volume. 

Oatley [19J discussed the correct method of combining transmission probabilities, 
!Xl and !X2, for two joined tubes of the same cross section and showed that the net 
transmission probability is given by 

1 1 1 
-=- +--1. 
a'll !Xl a2 

(2.39) 

In the example above, this gives the overall transmission probability as 0.346, which is 
much closer to the correct result. The Oatley method gives results with a maximum 
error of 5% or 6% for Ild,..,,2. It is, perhaps, surprising that the method gives such 
good results, since the derivation assumes random gas entry into the second tube and 
thus ignores the beaming effect. However, in short ducts the molecular distribution is 
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Fig. 2.5. Combination of two short tubes. 

not too seriously perturbed from a chaotic distribution, and in long ducts the entrance 
effect is relatively small. 

The transmission probabilities for each of the two tubes, in effect, includes an 
entrance correction. Thus, when Eq. (2.38) is applied, the overall transmission prob­
ability includes two entrance effects. This is correct when the two tubes are separated 
by a large volume but not when they are joined and the Oatley method is equivalent 
to removing one of the two corrections. 

A typical case is illustrated in Fig. 2.6, in which a pump is connected to a chamber 
via a tube of the same size as the pump inlet. The pump speed (S) has been measured, 
so that any entrance effects are already accounted for (at least in principJe). A pump 
can be regarded as a conductance with a transmission probability rxH equal to its Ho 
coefficient (the ratio of the pump speed to the conductance ofthe pump inlet aperture). 
If Ca is the pump and tube aperture conductance and rx is the tube transmission 
p.robability, then S = rxHCa and the tube conductance C equals rxCQ • The net speed at 
the chamber is then Sn = rxnCa• where 

(2.40) 

Al ternati vel y, 

(2.41) 

The effect of this procedure is to remove an entrance correction. 
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Chamber 

s 

Pump 

Fig. 2.6. Pump connected via a tube of the same diameter. 

If the pump speed is 300 liter' S -1 and the connecting tube is 200 mm long and 
100 mm in diameter, then Ca = 908 liter· s -1 (for air)) r.I. (for lid = 2) = 0.357, and 

which gives S1l = 188 liter' s -1 [instead of 155 liter' s -1 using Eq. (2.34)]. 
An addition theorem developed by Haefer [20] enables the calculation of multiple 

components of differing diameters. The overall transmission probability of n elements 
r.l.1n is related to the individual transmission probabilities (Xi and inlet areas Ai by 

(2.42) 

with 

bi.i+ 1 = 1 for Ai+ 1 < Ai (reducing cross-sectional area) 

bj,i+ 1 = 0 for Ai+ 1 ~ Ai (no reduction in cross-sectional area). 

The overall transmission probability r.l.1n is expressed in terms of the inlet tube 
aperture. 

Some cases of the application of this theorem will be discussed with reference to 
Fig. 2.7. 

(a) Series Arrangement of Tubes of Different Diameters (Fig. 2.7 a). The over­
an transmission probability is 
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(a) (b) (0) 

Fig. 2.7. Combinations of components. 

The diameter increases from tube 1 to tube 2 so that 82•1 = 0, but 83,2 = 1 since the 
diameter decreases from tubes 2 to 3, If lid = 2 for each tube and the diameters are 
15 mm~ 25 mm, and 20 mm for tubes 1, 2, and 3 respectively, then tX1n evaluates to 
0.214. The aperture conductance of tube 1 (IS-mm diameter) is 20.4 liter' s - \ so the 
conductance of the arrangement is 0.214Cul = 4.38 liter' s - I, If the order of the tubes 
is reversed (20 mm, 25 mm, 15 mm), tX1n now evaluates to 0.121. The inlet aperture 
conductance (for 20-mm diameter) is now 36.3 liter' s - 1, so the overall conductance 
is 0.121 x 36.3 == 4.38 liter . s -1 as expected. The conductance of an arrangement 
cannot be changed by reversing the order of components; but note that if the tubes 
were rearranged in ascending order of size, then lX'l~ == 0.224. It is generally the case 
that the highest conductance for a series of components is achieved when they are 
physically arranged in order of size. In a calculation, the temptation to reorder the 
components for mathematical convenience should be resisted since this can lead to 
incorrect results. 

Equation (2.42) relating transmission probabilities can be expressed in terms of 
conductances: 

lIn ( 1 1) n- 1 (1 1 ) 
- =- + L - -- + L -- -- 8i,i+b 
C1n Cal 1 Cmi Cai 1 Cai+1 Cai 

(2.44) 

which is more convenient if conductance values are given for components. 8 has the 
same meaning as in Eq. (2.42). 

The first summation in Eq. (2.44) contains the "tube only" conductance Cmt dis­
cussed by Holland et al. [21]: 

(2.45) 

that is, a tube with its entrance correction subtracted. If the conductance quoted for 
a component is the "tube only" value then the entrance correction should not be 
subtracted. A typical example would be a quarter swing valve which is not designed 
for direct connection to a large chamber but is normally connected via a manifold. 
Similar remarks apply to Eq. (2.42) if the tube only transmission probability is given. 
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Either of Eqs. (2.42) or (2.44) can be used to find the net speed of a pump in series 
with a set of components. 

(b) Pump Connected to a Chamber Via Two Tubes or Components ( Fig. 2.7 b) 

1 1 (1 1) (1 1) (1 1) (1 1) 
8

11 
= Cal + Cml - Cd + Cm2 - Cal + Cm3 - Ca~ + Ca3 - Ca2 • 

(2.46) 

Since Cm3 = (XHCa3 = 8, this reduces to 

1 1 1 1 2 - -- +- +---
8n - Cm1 Cm2 8 Ca2 ' 

(2.47) 

which can be written 

1 (1 1) (1 1) (1 1) 1 
8n = C

m1 
- Cal + Cd - C

a2 
+ C

rn2 
- C

a2 
+ S· (2.48) 

Written in terms of "tube only" conductances~ this becomes 

- +- +-. 1) 1 1 
Ca2 Ct2 8 

(2.49) 

The second term on the right-hand side of this equation can be seen as the total 
correction required to account for the differing sections (remembering that a correc­
tion for As is inherent in the pump speed). 

If, in Fig. 2.7b, tubes 1 and 2 and the pump all have the same aperture size of 
conductance Ca , then Eq. (2.48) becomes 

(2.50) 

Each tube has its entrance correction subtracted and only one correction, inherent in 
the pump speed, is applied. 

(e) Pump Connected to a Chamber Via a Second Chamber (Fig. 2.7 c). This 
case is equivalent to making Ca2 and Cm2 very large in Eq. (2.47), giving 

1 1 1 
- =-+-. 
Sn Cml S 

(2.51) 

In this case the entrance correction for tube 1 is retained. 

2.2.11. Cases of Unsteady Flow. Consider a system in which a pump is connected 
to a vessel via a valve and a pipe of some significant length. It is clear that, at the 
instant that the valve is opened, the throughputs at the pump and vessel must be 
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different. Some time is required for continuity to be established. Usually this is very 
short compared with the timescale for exhaust of the vessel, especially at continuum 
flow pressures where the pipe conductance is relatively high. However, if the "vessel" 
is a long pipe, then steady conditions are never achieved. 

Unsteady flow is of most interest under molecular flow conditions and is parti­
cularly relevant to filling, exhaust, or leak testing of long pipelines. Mathematical1y, 
unsteady molecular flow in a constant section duct is analogous to heat conduction in 
an infinite slab. Both can be treated as one-dimensional since there is no transverse 
flow. The cases described here are intended only as a small sample to illustrate the 
kind of unsteady flow problems that can be solved. Solutions for many heat conduc­
tion cases, which have practical parallels in molecular flow, are available in the 
literature; Carslaw and Jaeger [22] is a good source of reference. 

In the equations which follow, V is the volume and C the conductance of the pipe, 
assumed to be long. Given a relation for pressure distribution, the throughput (from 
or into the pipe) can be obtained from the pressure gradient at the end of a pipe: 

Q = Cl(dP) . 
dx end 

(2.52) 

Case 1. Pipe with uniform initial pressure po) closed at x = O. x = 1 opened to an 
environment maintained at constant pressure Pe at t = O. 

4 00 (- 1)" { 2 C} [ ] 
P - Pe = ; (Po - Pel n~o(2n + 1) exp - (2n + 1)2 : V t cos (2n + 1) ~7 . 

(2.53) 

This covers both exhaust and filling of a pipe. Lawson [23] discussed the application 
of this and similar cases to pumping of trapped volumes and leakage. 

The time constant for the first (slowest) term is 

(2.54) 

Contrast this with the time constant of a chamber of volume V pumped at speed S or 
through a restrictive conductance C (covered in Chapter 9). 

For air at 20°C (l and d in meters) we have 

12 
'to = 0.00263 d sec, (2.55) 

and for helium we have 

(2.56) 
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A 1-meter-Iong pipe, 10 mm in diameter would have a time constant for helium of 
'" 100 msec. For a pipe length of 10 meters, this increases to '" 10 sec. Leak testing can 
be difficult with a detector at the downstream end of such long lines since any leak will 
be located at the position of the helium probe several seconds prior to the indication 
on the leak detector gauge. 

The series converges quite rapidly and taking only the first term is a good approxi­
mation for t > O.3ro. Thus, taking only the first term we obtain, at x = 0 

(2.57) 

and the throughput 

(2.58) 

Case 2. Pipe, with constant initial pressure Po, closed at x = 0 and pumped at the 
other end by a pump of constant speed S, for t > O. 

co cos (¢N7 )sec¢, ( 2 C )' 
P = Po2r L: ( 1) tP2 exp - CPn V t , 

n=l r r + + n 

where r = SIC and tPn are the roots of 

S 
¢tancp =C. 

A good approximation for the first root is 

2 S 
CPl = 4' 

C+-S 
11:

2 

accurate to within 30/0 in the worst case. 
Taking only the first term of the series for throughput, we obtain 

A ¢ltan ¢l (2C ) 
~ = 2PoS r(r + 1) + 4>i exp - 4>ly t . 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

For S ~ C the time constant becomes Y IS and the case reduces to the simple pumpout 
of a large chamber. 

Case 3. Pipe with zero initial pressure. Constant leak QL into the pipe at x = 0 and 
constant pumping speed S at x = I for t > O. 
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This is again relevant to leak test of a long pipeline since the initial partial pressure 
of He will be zero. 

(2.63) 

where r = SIC and CPll has the same meaning as in Case 2. 
Taking only the first term) the throughput from the pipe is 

I"l I"l { [ (cpi + r2)sin CP1 ( 2 C)]} 
\! = \!L 1 - 2 CPl[r(r + 1) + ¢i] exp - CPl V t . (2.64) 

2.3. CONTINUUM FLOW 

In the continuum regime) calculation of gas flow through ducts is complicated by the 
different types of flow which can occur. Flow may be broadly distinguished into two 
major types, referred to as viscous laminar flow and turbulent flow. Since flow through 
a duct is driven by a pressure difference, all gas flow is compressible. There are 
circumstances in which gas can be treated as incompressible, and this leads to 
considerable simplification of the equations describing flow. However) there are also 
many circumstances in which compressibility cannot be ignored, so compressible flow 
will also be discussed. 

Continuum (or viscous) flow is often thought of as occurring at relatively high 
pressures. But consider air flowing through a 100mm (4 inch) diameter pipe. From Eq. 
(2.2) the Knudsen number Kn is < 0.01 (and hence the flow continuum) down to 
pressures of about 0.1 mbar. Thus many vacuum processes will operate at pressures 
where continuum flow conditions prevail. 

At relatively low velocities) gas flows smoothly in stream lines, generally parallel to 
the duct walls) and the flow is said to be laminar. In long ducts, viscosity of the gas is 
a controlling factor in the flow rate; this is not the case in short ducts, although the 
flow may still be laminar. As the flow velocity is increased, there comes a critical point 
at which the flow breaks up into turbulent eddies. These two types of flow, viscous 
laminar and turbulent, are described by different equations. It is importanf to 
distinguish these flow types in calculation of flow rates; failure to do so can lead to 
wildly inaccurate results. In short ducts, or in longer ducts at high flow velocities, 
compressibility becomes important and use of incompressible flow formulae can also 
lead to serious errors. 

The primary controlling parameter in the viscous behavior of Newtonian* fluids is 
the dimensionless Reynolds number 

(2.65) 

* Newtonian fluids are those in which the shear stress is proportional to the transverse velocity gradient. 
Most common fluids (water, oils, and gases) are newtonian. 


