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Notes: Master Equation

1 Master Equation

A main and obvious advantage of the density-operator formalism is that it provides a method for handling
nonunitary evolution of the quantum state. This generally occurs in the treatment of open quantum systems:
quantum systems coupled to external systems that we do not directly track.1

We will now study the evolution of a quantum system, described by Hamiltonian HS, interacting with a
reservoir, described by Hamiltonian HR. We will assume the system–reservoir interaction, described by HSR,
to be weak, causing slow evolution on the uncoupled time scales of the system and reservoir separately. The
evolution of the total system is unitary, given by

∂tρSR = −
i

~
[H, ρSR], (1)

where ρSR is the combined state of the system and reservoir, and the total Hamiltonian is

H = HS + HR + HSR. (2)

Our goal is to derive an equation of motion for the state of the system alone, given by a partial trace over
the reservoir degrees of freedom:

ρ := TrR[ρSR]. (3)

Note that so long as we are interested in operators that act solely on the system’s Hilbert space, this reduced
density operator is sufficient to compute any appropriate expectation values.

We will derive the master equation with a number of approximations and idealizations, mostly related to
the reservoir having many degrees of freedom. The approximations here typically work extremely well in
quantum optics, though not necessarily in other areas such as condensed-matter physics where, for example,
the weak-coupling idealization may break down. Examples of reservoirs include the quantum electromagnetic
field (in a vacuum or thermal state), or the internal degrees of freedom of a composite object.

1.1 Interaction Representation

The first step is to switch to the interaction representation, in effect hiding the fast dynamics of the uncoupled
system and reservoir, and focusing on the slow dynamics induced by HSR. We do this via the transformations

ρ̃SR(t) = ei(HS+HR)t/~ρSR(t)e−i(HS+HR)t/~

H̃SR(t) = ei(HS+HR)t/~HSRe−i(HS+HR)t/~,

(4)

so that the formerly time-independent interaction becomes explicitly time-dependent. The equation of
motion then becomes

∂tρ̃SR(t) = −
i

~
[H̃SR(t), ρ̃SR(t)]. (5)

1For further reading, see William H. Louisell, Quantum Statistical Properties of Radiation (Wiley, 1973), Chapter 6; Claude
Cohen–Tannoudji, Jacques Dupont-Roc, and Gilbert Grynberg, Atom–Photon Interactions: Basic Processes and Applications

(Wiley, 1992), Chapter IV; and Howard Carmichael, An Open Systems Approach to Quantum Optics (Springer, 1993), Chapter
1.



Integrating this from t to t + ∆t,

ρ̃SR(t + ∆t) = ρ̃SR(t) −
i

~

∫ t+∆t

t

dt′ [H̃SR(t′), ρ̃SR(t′)]. (6)

Iterating this equation by using it as an expression for ρ̃SR(t′),

ρ̃SR(t + ∆t) − ρ̃SR(t) = −
i

~

∫ t+∆t

t

dt′ [H̃SR(t′), ρ̃SR(t)] −
1

~2

∫ t+∆t

t

dt′
∫ t′

t

dt′′ [H̃SR(t′), [H̃SR(t′′), ρ̃SR(t′′)]]. (7)

Now in taking the trace over the reservoir. In doing so, we will assume that the first term on the right-hand
side vanishes. More specifically, we assume

TrR[H̃SR(t′)ρ̃SR(t)] = 0. (8)

This follows by assuming that the total system–reservoir state always approximately factorizes

ρ̃SR(t) ≈ ρ̃(t) ⊗ ρ̃R, (9)

where ρ̃R is the stationary state of the reservoir. This amounts to assuming that the reservoir is large and
complex, and weak coupling of the system to the reservoir, so that the perturbation to the reservoir by the
system is small. In this case, the time interval ∆t ≫ τc, where τc is the correlation time of the reservoir—the
time for reservoir and system–reservoir correlations to decay away. This also amounts to a coarse-graining
approximation, which means that we are smoothing out any fast dynamics on time scales of the order of
τc or shorter. Thus, any correlations that have arisen in past time intervals have decayed away. Of course,
new correlations arise due to the coupling in the present time interval, which will give rise to nonunitary
terms in the evolution equation for the reduced state. Then the assumption (8) amounts to

TrR[H̃SR(t′)ρ̃R] = 0. (10)

This assumption means essentially that there is no dc component to the system–reservoir coupling—that is,
the system–reservoir coupling consists of fluctuations about a zero mean. This can always be arranged by
absorbing any nonzero mean into the system Hamiltonian.

1.2 Born–Markov Approximation

Since the first term vanishes under the partial trace, with the trace Eq. (7) becomes

∆ρ̃(t) ≈ −
1

~2

∫ t+∆t

t

dt′
∫ t′

t

dt′′ TrR[H̃SR(t′), [H̃SR(t′′), ρ̃SR(t′′)]], (11)

with ∆ρ̃(t) := ρ̃(t + ∆t) − ρ̃(t). Now we will make the Born–Markov approximation by setting

ρ̃SR(t′′) ≈ ρ̃(t) ⊗ ρ̃R. (12)

In fact there is a pair of approximations at work here. The Born approximation amounts to assuming the
factorization in (9), which we have justified in terms of a large, complex reservoir with a short coherence time.
The Markov approximation amounts to setting ρ(t′′) to ρ(t) in (12), which will result in an evolution
equation that only depends on ρ(t), and not the past history of the density operator. We can justify this
approximation by noting that ∆t is small and HSR induces a weak perturbation, so that ρ(t′′) = ρ(t)+O(∆t).
Then this amounts to a lowest-order expansion in ∆t of the right-hand side of Eq. (11), which is appropriate
in view of the limit ∆t −→ 0 to obtain a differential equation (though in a coarse-grained sense, since strictly
speaking we always require ∆t ≫ τc).
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Next we change integration variables by setting

τ := t′ − t′′, (13)

so that the integration becomes

∫ t+∆t

t

dt′
∫ t′

t

dt′′ =

∫ ∆t

0

dτ

∫ t+∆t

t+τ

dt′

≈

∫ ∞

0

dτ

∫ t+∆t

t

dt′.

(14)

In writing down the final, approximate form for the integrals, we have used the fact that the integrand
involves an expectation value of the interaction Hamiltonian taken at times that differ by τ , as we will
explore further shortly. That is, the integrand involves reservoir correlation functions, which decay away on
the time scale τc.

1.3 Interaction

Now we make a reasonably general assumption regarding the interaction Hamiltonian; namely, that it can
be written as a sum of products over system and reservoir operators:

HSR = ~SαRα. (15)

(Recall that repeated indices imply summation.) The interpretation here is that if Sα is a Hermitian
operator, then it represents an observable that is being effectively (or actually) monitored via coupling
to the environment. For example, a position measurement is represented by an interaction of the form
HSR = xR. Alternately, the operators need not be Hermitian. For example, an interaction of the form
HSR = SR† +S†R represents the exchange of quanta (e.g., of energy) between the system and reservoir, and
would thus represent dissipation or loss of energy to the reservoir. Such interactions occur in spontaneous
emission and cavity decay.

With the interaction of the form (15) and the change of integration in Eqs. (14), the change (11) in the
quantum state becomes

∆ρ̃(t) ≈ −

∫ ∞

0

dτ

∫ t+∆t

t

dt′
{

[

S̃α(t′)S̃β(t′ − τ)ρ̃(t) − S̃β(t′ − τ)ρ̃(t)S̃α(t′)
]

Gαβ(τ)

+
[

ρ̃(t)S̃β(t′ − τ)S̃α(t′) − S̃α(t′)ρ̃(t)S̃β(t′ − τ)
]

Gβα(−τ)

}

,

(16)

where we have defined the reservoir correlation functions

Gαβ(τ) := TrR

[

R̃α(t′)R̃β(t′ − τ)
]

=
〈

R̃α(t′)R̃β(t′ − τ)
〉

R

=
〈

R̃α(τ)R̃β(0)
〉

R

, (17)

which depend only on the time difference because the reservoir is in a stationary state. Now we make the
further assumption

S̃α(t) = eiHSt/~Sαe−iHSt/~ = eiωαt (18)

about the interaction-picture system operators. This is not necessarily a restrictive assumption, since multiple
frequencies for a given system operator may be separated in the sum in (15). Then Eq. (16) becomes

∆ρ̃(t) ≈ −

∫ ∞

0

dτ

∫ t+∆t

t

dt′
{

[

SαSβ ρ̃(t) − Sβ ρ̃(t)Sα

]

Gαβ(τ)

+
[

ρ̃(t)SβSα − Sαρ̃(t)Sβ

]

Gβα(−τ)

}

eiωαt′eiωβ(t′−τ).

(19)
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Now defining

I(ωα + ωβ) :=

∫ t+∆t

t

dt′ ei(ωα+ωβ)t′

w+
αβ :=

∫ ∞

0

dτ e−iωβτGαβ(τ)

w−
βα :=

∫ ∞

0

dτ e−iωβτGβα(−τ),

(20)

we can write

∆ρ̃(t) ≈ −

{

[

SαSβ ρ̃(t) − Sβ ρ̃(t)Sα

]

w+
αβ +

[

ρ̃(t)SβSα − Sαρ̃(t)Sβ

]

w−
βα

}

I(ωα + ωβ). (21)

Under the assumption of fast (uncoupled) system and reservoir dynamics,

∆t ≫ (ωα + ωβ)−1, (22)

the integral I(ωα + ωβ) averages to zero unless ωα + ωβ = 0. Thus we may replace the integral with a
Kronecker delta,

I(ωα + ωβ) = ∆t δ(ωα,−ωβ). (23)

Now formally taking the limit of small ∆t,

∂tρ̃(t) ≈
∆ρ̃(t)

∆t
= −δ(ωα,−ωβ)

{

[

SαSβρ̃(t) − Sβ ρ̃(t)Sα

]

w+
αβ +

[

ρ̃(t)SβSα − Sαρ̃(t)Sβ

]

w−
βα

}

, (24)

where again we must keep in mind that this differential equation is coarse-grained in the sense of not
representing dynamics on time scales as short as τc or (ωα + ωβ)−1 for different frequencies. Now transforming
out of the interaction representation, using the assumption (18) and ωα = −ωβ,

∂tρ(t) = −
i

~
[HS, ρ(t)] − δ(ωα,−ωβ)

{

[

SαSβρ(t) − Sβρ(t)Sα

]

w+
αβ +

[

ρ(t)SβSα − Sαρ(t)Sβ

]

w−
βα

}

. (25)

Now we use the fact that HSR is Hermitian, so terms of the form SR in (15) that are not Hermitian must

be accompanied by their adjoint terms S†R†. Clearly, terms where Sα = S
†
β satisfy δ(ωα,−ωβ) = 1, so we

can explicitly combine these pairs of terms to write the master equation in terms of only a single sum:

∂tρ(t) = −
i

~
[HS, ρ(t)] +

∑

α

{

[

Sαρ(t)S†
α − S†

αSαρ(t)
]

w+
α +

[

Sαρ(t)S†
α − ρ(t)S†

αSα

]

w−
α

}

. (26)

Of course, terms of the same form carry through when Sα is Hermitian. In the expression above we have
also defined the reduced integrals

w+
α :=

∫ ∞

0

dτ e−iωατ
〈

R̃†
α(τ)R̃α(0)

〉

R

w−
α :=

∫ ∞

0

dτ eiωατ
〈

R̃†
α(0)R̃α(τ)

〉

R

= [w+
α ]∗.

(27)

Note that other cross-terms could in principle occur in Eq. (25) that satisfy ωα = −ωβ, which we appear
to be missing here. However, if we end up with terms like S1ρS

†
2 , this can always be absorbed into terms

of the form (S1 + S2)ρ(S1 + S2)
†, representing interferences in the couplings represented by S1,2. The cross

terms are weighted by a cross-correlation function between R1 and R2, representing the cross terms of the
coherece. In the absence of cross coherence, only terms of the form S1ρS

†
1 and S2ρS

†
2 should appear. Weighted

combinations of these terms with (S1 + S2)ρ(S1 + S2)
† terms can account for any degree of coherence.
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Now separating out the real and imaginary parts of the integrals (27) in (26),

∂tρ(t) = −
i

~
[HS, ρ(t)] +

∑

α

kα

{

Sαρ(t)S†
α −

1

2

[

S†
αSαρ(t) + ρ(t)S†

αSα

]

}

− iIm[w+
α ]

[

S†
αSα, ρ(t)

]

. (28)

where
kα := 2Re[w+

α ]. (29)

Since the last term has the form of Hamiltonian evolution, we may drop it, assuming it is accounted for by
HS (or arranging the definition of the system such that it does). Now separating out the real and imaginary
parts of the integrals,

∂tρ(t) = −
i

~
[HS, ρ(t)] +

∑

α

kα

{

Sαρ(t)S†
α −

1

2

[

S†
αSαρ(t) + ρ(t)S†

αSα

]

}

.

(Born–Markov master equation) (30)
We have thus arrived at the general Lindblad form of the master equation in the Born–Markov approxi-
mation. Again, the system operators Sα represent the coupling channel of the system to the reservoir, and
thus the channel by which the system may be observed. Thus, for example, if Sα −→ x, then we have the
master equation for a position measurement, whereas if Sα −→ a, where a is the annihilation operator for
the harmonic oscillator, then we have the master equation for energy loss (and thus damping) of a quantum
harmonic oscillator.
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